\( x^{2} \) Algebra The perimeter of \( \square P Q R S \) is 84 . Find the length of each side of \( \square P Q R S \) under the given conditions. \( \begin{array}{llll}\text { 27. } P Q=Q R & \text { 28. } Q R=3(R S) & \text { 29. } R S=S P-7 & \text { 30. } S P=R S^{2}\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
Let's denote the lengths of the sides as follows: - \( PQ = x \) - \( QR = x \) (since \( PQ = QR \)) - \( RS = y \) - \( SP = y + 7 \) (since \( RS = SP - 7 \)) Given the relationship for \( QR \), we can substitute: \[ QR = 3(RS) \implies x = 3y \] Now, we use the perimeter equation: \[ PQ + QR + RS + SP = 84 \] Substituting the expressions we have: \[ x + x + y + (y + 7) = 84 \] This simplifies to: \[ 2x + 2y + 7 = 84 \] Now, substituting \( x = 3y \): \[ 2(3y) + 2y + 7 = 84 \] This simplifies to: \[ 6y + 2y + 7 = 84 \] \[ 8y + 7 = 84 \] Subtracting 7 from both sides: \[ 8y = 77 \] Dividing by 8: \[ y = \frac{77}{8} = 9.625 \] Now, substituting back to find \( x \): \[ x = 3y = 3 \times \frac{77}{8} = \frac{231}{8} = 28.875 \] Finally, we find the lengths of the sides: - \( PQ = QR = 28.875 \) - \( RS = 9.625 \) - \( SP = RS + 7 = 9.625 + 7 = 16.625 \) So the lengths of the sides of the square \( PQRS \) are: - \( PQ = 28.875 \) - \( QR = 28.875 \) - \( RS = 9.625 \) - \( SP = 16.625 \)