Pregunta
upstudy study bank question image url

Question 4 (1 point) You have an investment that will mature in 20 months with the val \( \$ 2500.00 \). You need some quick cash and decide to sell it today discount rate of \( 10 \% \) compounded quarterly. What is the cash val \( \$ 2219.63 \)

Ask by Lewis Clarke. in Canada
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The present value of the investment is approximately \$2120.54.

Solución

To find the present value of the investment, we can use the formula for present value (PV) when interest is compounded quarterly. The formula is: \[ PV = \frac{FV}{(1 + r/n)^{nt}} \] Where: - \( PV \) = Present Value - \( FV \) = Future Value (the amount the investment will mature to, which is \( \$2500.00 \)) - \( r \) = annual interest rate (as a decimal, so \( 10\% = 0.10 \)) - \( n \) = number of compounding periods per year (quarterly means \( n = 4 \)) - \( t \) = time in years (20 months = \( \frac{20}{12} \) years) Now, let's calculate the present value step by step. 1. Convert the time from months to years: \[ t = \frac{20}{12} \approx 1.6667 \text{ years} \] 2. Substitute the values into the formula: \[ PV = \frac{2500}{(1 + 0.10/4)^{4 \cdot 1.6667}} \] 3. Calculate \( r/n \): \[ r/n = \frac{0.10}{4} = 0.025 \] 4. Calculate \( nt \): \[ nt = 4 \cdot 1.6667 \approx 6.6668 \] 5. Now substitute these values into the formula: \[ PV = \frac{2500}{(1 + 0.025)^{6.6668}} \] 6. Calculate \( (1 + 0.025)^{6.6668} \): \[ (1.025)^{6.6668} \] 7. Finally, calculate the present value \( PV \). Let's perform the calculations. Calculate the value by following steps: - step0: Calculate: \(\frac{2500}{1.025^{6.6668}}\) - step1: Convert the expressions: \(\frac{2500}{\left(\frac{41}{40}\right)^{\frac{16667}{2500}}}\) - step2: Simplify the expression: \(\frac{2500}{\frac{41^{\frac{16667}{2500}}}{40^{\frac{16667}{2500}}}}\) - step3: Rewrite the expression: \(\frac{2500\times 40^{\frac{16667}{2500}}}{41^{\frac{16667}{2500}}}\) - step4: Simplify: \(\frac{2500\times 40^{6}\sqrt[2500]{40^{1667}}}{41^{\frac{16667}{2500}}}\) - step5: Simplify: \(\frac{2500\times 40^{6}\sqrt[2500]{40^{1667}}}{41^{6}\sqrt[2500]{41^{1667}}}\) - step6: Multiply by the Conjugate: \(\frac{2500\times 40^{6}\sqrt[2500]{40^{1667}}\times \sqrt[2500]{41^{833}}}{41^{6}\sqrt[2500]{41^{1667}}\times \sqrt[2500]{41^{833}}}\) - step7: Multiply the numbers: \(\frac{2500\times 40^{6}\sqrt[2500]{40^{1667}\times 41^{833}}}{41^{6}\sqrt[2500]{41^{1667}}\times \sqrt[2500]{41^{833}}}\) - step8: Multiply the numbers: \(\frac{2500\times 40^{6}\sqrt[2500]{40^{1667}\times 41^{833}}}{41^{7}}\) After performing the calculations, we find that the present value (PV) is approximately: \[ PV \approx 2120.54 \] This means that if you sell the investment today, you would receive approximately \( \$2120.54 \). However, you mentioned a cash value of \( \$2219.63 \). It seems there might be a discrepancy. Based on the calculations, the present value of the investment at a \( 10\% \) discount rate compounded quarterly for \( 20 \) months is approximately \( \$2120.54 \). If you have any further questions or need additional clarification, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Did you know that the concept of present value dates back to the times of the ancient Romans? They utilized similar calculations for loans and investments because they understood that money today is worth more than the same amount in the future, given the potential to earn interest. This principle has evolved and remains a cornerstone in modern finance! When it comes to real-world applications, the present value formula is crucial for anyone making investment decisions. It helps evaluate whether to buy, sell, or hold an asset by providing a clear picture of its worth today, considering future cash flows and the time value of money. So, next time you're knee-deep in investment decisions, remember that calculating the present value can guide you to financial wisdom!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad