Responder
1. **Problem 5.1**
- Given: \(\sqrt{3} \cdot \frac{1}{\cos \alpha} + 2 = 0\) and \(\tan \alpha < 0\).
- Solve for \(\cos \alpha\):
\[
\cos \alpha = -\frac{\sqrt{3}}{2}
\]
- Since \(\tan \alpha < 0\) and \(\cos \alpha < 0\), \(\alpha\) is in quadrant II.
- Find \(\sin \alpha\):
\[
\sin \alpha = \frac{1}{2}
\]
- Find \(\tan \alpha\):
\[
\tan \alpha = -\frac{\sqrt{3}}{3}
\]
- Calculate \(10 \sin \alpha - 3 \tan^2 \alpha\):
\[
10 \times \frac{1}{2} - 3 \times \left(-\frac{\sqrt{3}}{3}\right)^2 = 5 - 3 \times \frac{1}{3} = 5 - 1 = 4
\]
- **Conclusion:** The value is 4.
2. **Problem 5.2**
- Given: \(\cos 12^\circ = m\).
- Find \(\sin 168^\circ\):
\[
\sin 168^\circ = \sin(180^\circ - 12^\circ) = \sin 12^\circ
\]
- Using the Pythagorean identity:
\[
\sin^2 12^\circ = 1 - m^2
\]
- Since \(12^\circ\) is in the first quadrant:
\[
\sin 12^\circ = \sqrt{1 - m^2}
\]
- **Conclusion:** \(\sin 168^\circ = \sqrt{1 - m^2}\).
Solución
1. **Problem 5.1**
Given
\[
\sqrt{3}\cdot\frac{1}{\cos \alpha}+2=0,
\]
we first isolate the term with \(\cos \alpha\):
\[
\sqrt{3}\cdot\frac{1}{\cos \alpha}=-2 \quad \Longrightarrow \quad \frac{\sqrt{3}}{\cos \alpha}=-2.
\]
Multiply both sides by \(\cos \alpha\):
\[
\sqrt{3}=-2\cos \alpha.
\]
Dividing by \(-2\) gives:
\[
\cos \alpha=-\frac{\sqrt{3}}{2}.
\]
The condition \(\tan \alpha<0\) (and knowing \(\tan \alpha=\frac{\sin \alpha}{\cos \alpha}\)) implies that \(\sin \alpha\) and \(\cos \alpha\) have opposite signs. Since \(\cos \alpha<0\), it must be that \(\sin \alpha>0\). Thus, \(\alpha\) is in quadrant II.
In quadrant II, using the Pythagorean identity:
\[
\sin\alpha=\sqrt{1-\cos^2\alpha}=\sqrt{1-\left(-\frac{\sqrt{3}}{2}\right)^2}=\sqrt{1-\frac{3}{4}}=\sqrt{\frac{1}{4}}=\frac{1}{2}.
\]
Then,
\[
\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}}=-\frac{1}{\sqrt{3}}=-\frac{\sqrt{3}}{3}.
\]
Now evaluate
\[
10\sin\alpha-3\tan^2\alpha.
\]
Substitute the values:
\[
10\left(\frac{1}{2}\right)-3\left(-\frac{\sqrt{3}}{3}\right)^2=5-3\left(\frac{3}{9}\right)=5-3\left(\frac{1}{3}\right)=5-1=4.
\]
**Diagram Aid:**
- Draw a unit circle.
- Locate quadrant II where \(\cos\alpha\) is negative and \(\sin\alpha\) is positive.
- Mark the point on the circle corresponding to an angle where \(\cos \alpha = -\frac{\sqrt{3}}{2}\) and \(\sin \alpha = \frac{1}{2}\).
**Conclusion:** The value of \(10\sin\alpha-3\tan^2\alpha\) is \(\boxed{4}\).
2. **Problem 5.2**
Given
\[
\cos 12^\circ = m,
\]
we need to express \(\sin 168^\circ\) in terms of \(m\).
Recognize that
\[
168^\circ = 180^\circ - 12^\circ,
\]
so
\[
\sin 168^\circ = \sin(180^\circ-12^\circ) = \sin 12^\circ.
\]
Using the Pythagorean identity:
\[
\sin^2 12^\circ + \cos^2 12^\circ = 1,
\]
substitute \(\cos 12^\circ = m\):
\[
\sin^2 12^\circ = 1 - m^2.
\]
Since \(12^\circ\) is in the first quadrant where sine is positive, we have:
\[
\sin 12^\circ = \sqrt{1-m^2}.
\]
**Conclusion:** \(\sin 168^\circ = \sqrt{1-m^2}\).
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución