Do the following for the function \( g(x)=10 x^{2}+9 x \). (a) Express the slope of the secant line in terms of \( x \) and \( h \). (b) Find \( m_{s e c} \) for \( h=0.5,0.1 \), and 0.01 at \( x=1 \). What value does \( m_{s e c} \) approach as \( h \) approaches 0 ? (c) Find the equation for the secant line at \( x=1 \) with \( h=0.01 \). (d) Graph \( g \) and the secant line found in part (c) on the same viewing window. (a) Type the slope of the secant line in terms of \( x \) and \( h \). \( m_{\text {sec }}=\square \) (Simplify your answer. Do not factor.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To find the slope of the secant line for the function \( g(x) = 10x^2 + 9x \), we first express it as follows: \[ m_{\text{sec}} = \frac{g(x+h) - g(x)}{h} \] Now, we need to compute \( g(x+h) \): \[ g(x+h) = 10(x+h)^2 + 9(x+h) = 10(x^2 + 2xh + h^2) + 9x + 9h = 10x^2 + 20xh + 10h^2 + 9x + 9h \] Now substituting back into the secant line formula, we get: \[ m_{\text{sec}} = \frac{(10x^2 + 20xh + 10h^2 + 9x + 9h) - (10x^2 + 9x)}{h} \] This simplifies to: \[ m_{\text{sec}} = \frac{20xh + 10h^2 + 9h}{h} \] Factoring out \( h \) gives: \[ m_{\text{sec}} = 20x + 10h + 9 \] Thus, the final expression for the slope of the secant line in terms of \( x \) and \( h \) is: \[ m_{\text{sec}} = 20x + 10h + 9 \] \( m_{\text {sec }}=\boxed{20x + 10h + 9} \)
