Responder
The critical points of the function \( f(x) = x^7 e^{-\frac{x^2}{4}} \) are:
- \( x = -\sqrt{14} \) (local minimum)
- \( x = 0 \) (saddle point)
- \( x = \sqrt{14} \) (local maximum)
Mark these points on the graph.
Solución
We start with the function
\[
f(x)=x^7e^{-\frac{x^2}{4}}.
\]
A critical point occurs when the derivative \( f'(x) \) is zero or undefined. Since \( f(x) \) is smooth everywhere, we only need to solve \( f'(x)=0 \).
### Step 1. Compute \( f'(x) \)
Using the product rule for differentiation, we have
\[
f'(x)=\frac{d}{dx}\left(x^7\right)e^{-\frac{x^2}{4}}+x^7\frac{d}{dx}\left(e^{-\frac{x^2}{4}}\right).
\]
Differentiate each part:
1. \(\frac{d}{dx}\left(x^7\right)=7x^6.\)
2. To differentiate \( e^{-\frac{x^2}{4}} \), use the chain rule. Let \( u(x)=-\frac{x^2}{4} \); then
\[
\frac{du}{dx}=-\frac{x}{2} \quad\text{and}\quad \frac{d}{dx}\left(e^{u(x)}\right)=e^{u(x)}\frac{du}{dx}=-\frac{x}{2}e^{-\frac{x^2}{4}}.
\]
So, the derivative is
\[
f'(x)=7x^6e^{-\frac{x^2}{4}}+x^7\left(-\frac{x}{2}e^{-\frac{x^2}{4}}\right).
\]
This simplifies to
\[
f'(x)=e^{-\frac{x^2}{4}}\left(7x^6-\frac{x^8}{2}\right).
\]
### Step 2. Factor the Derivative
Factor \( x^6 \) from the expression:
\[
f'(x)=e^{-\frac{x^2}{4}}x^6\left(7-\frac{x^2}{2}\right).
\]
Since \( e^{-\frac{x^2}{4}} \) is never zero, we set the remaining factors equal to zero:
\[
x^6\left(7-\frac{x^2}{2}\right)=0.
\]
### Step 3. Solve for Critical Points
Set each factor equal to zero:
1. \( x^6=0 \) gives
\[
x=0.
\]
2. \( 7-\frac{x^2}{2}=0 \) gives
\[
\frac{x^2}{2}=7,
\]
\[
x^2=14,
\]
\[
x=\sqrt{14} \quad \text{or} \quad x=-\sqrt{14}.
\]
Thus, the critical points are
\[
x=-\sqrt{14}, \quad x=0, \quad x=\sqrt{14}.
\]
### Step 4. Analyze the Nature of the Critical Points (Optional)
- For \( x=-\sqrt{14} \):
To the left of \( x=-\sqrt{14} \), \( 7-\frac{x^2}{2} \) is negative (since \( x^2>14 \)), making \( f'(x) \) negative. For \( x \) just to the right, \( 7-\frac{x^2}{2} \) is positive. Thus, \( f(x) \) changes from decreasing to increasing, indicating a **local minimum**.
- For \( x=\sqrt{14} \):
To the left, \( f'(x) \) is positive, and to the right, it is negative. Therefore, \( f(x) \) changes from increasing to decreasing, indicating a **local maximum**.
- For \( x=0 \):
The derivative \( f'(x) \) is zero, but around \( 0 \) (both to the left and right) \( 7-\frac{x^2}{2}>0 \), so \( f'(x) \) remains positive on both sides. Hence, \( x=0 \) is a **stationary point with a horizontal tangent** but not a local extremum.
### Final Answer
The critical points of the function
\[
f(x)=x^7e^{-\frac{x^2}{4}}
\]
are:
- \( x=-\sqrt{14} \) (local minimum),
- \( x=0 \) (a saddle point or point of inflection with a horizontal tangent),
- \( x=\sqrt{14} \) (local maximum).
These are the points to mark on the graph.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución