1) \( \left(-x^{2} y^{2}+3 x^{3} y-x^{4}\right)+\left(y^{4}-x y^{3}+7 x^{2} y^{2}\right)+\left(3 x^{4}-2 x^{3} y+y^{4}\right. \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To simplify the expression, we can start by combining like terms. First, we will rewrite the expression clearly by removing the parentheses: \[ -x^{2} y^{2} + 3 x^{3} y - x^{4} + y^{4} - x y^{3} + 7 x^{2} y^{2} + 3 x^{4} - 2 x^{3} y + y^{4} \] Next, we group the terms based on their powers of \(x\) and \(y\): 1. For \(x^4\) terms: \(-x^4 + 3x^4 = 2x^4\) 2. For \(x^3y\) terms: \(3x^3y - 2x^3y = x^3y\) 3. For \(x^2y^2\) terms: \(-x^2y^2 + 7x^2y^2 = 6x^2y^2\) 4. For \(xy^3\) terms: \(-xy^3\) (no other \(xy^3\) terms to combine) 5. For \(y^4\) terms: \(y^4 + y^4 = 2y^4\) Now, we can combine all the simplified terms into a single expression: \[ 2x^4 + x^3y + 6x^2y^2 - xy^3 + 2y^4 \] This is the simplified expression.
