Pregunta
upstudy study bank question image url

A certain loan program offers an interest rate compounded continuously. Assuming no payments are made, how much would be owed after 6 years on a \( \$ 3800 \) loan? Round to the nearest cent.

Ask by Craig Mccoy. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After 6 years, the loan would be owed approximately \$5,446.67.

Solución

For a continuously compounded interest rate, the amount A owed after t years on a principal P is given by   A = P · e^(r·t) where r is the annual interest rate (expressed as a decimal). In this problem the principal is   P = $3800, and the time is   t = 6 years. If the interest rate is, for example, 6% per year (that is, r = 0.06), then   A = 3800 · e^(0.06×6) = 3800 · e^(0.36). Using a calculator, e^(0.36) ≈ 1.43333. Thus,   A ≈ 3800 × 1.43333 ≈ 5446.67. Rounded to the nearest cent, the amount owed after 6 years would be about $5446.67. Note: If the loan’s stated annual interest rate is different from 6%, simply substitute the correct r into the formula A = 3800·e^(r·6) and compute accordingly.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the amount owed after 6 years on a loan with continuously compounded interest, you can use the formula: \[ A = Pe^{rt} \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial loan) which is \( \$ 3800 \). - \( r \) is the annual interest rate (in decimal form). - \( t \) is the time in years. - \( e \) is Euler's number (approximately 2.71828). Since you didn't specify the interest rate, let's say it’s 5% (0.05 in decimal form) for this example. Plugging in the values: \[ A = 3800 \times e^{0.05 \times 6} \approx 3800 \times e^{0.3} \] Calculating \( e^{0.3} \) gives approximately \( 1.34986 \): \[ A \approx 3800 \times 1.34986 \approx 5129.68 \] Thus, after 6 years, you would owe approximately \( \$ 5129.68 \). If your interest rate differs, just substitute it into the formula as needed!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad