cide whether the relation defines a function. \( \begin{array}{ll}\text { 8) } y^{2}=x & \text { B) Function }\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To determine whether the given relation \( y^{2} = x \) defines a function, we need to check if every value of \( x \) corresponds to exactly one value of \( y \). In this case, for a positive \( x \), there are two corresponding values of \( y \) (both \( y = \sqrt{x} \) and \( y = -\sqrt{x} \)), meaning that this relation does not meet the criteria for a function. Therefore, \( y^{2} = x \) does not define a function. For a relation to be a function, each input (or \( x \) value) must have a unique output (or \( y \) value). In the case of \( y^{2} = x \), any positive \( x \) will yield two outputs for \( y \), which violates the definition of a function.
