Pregunta
upstudy study bank question image url

7 Substitute the given values and then solve for the unknown in each of the following common formulas a \( x=a+a t \) b \( s=a t+\frac{1}{2} a t^{2} \). Solve for a given \( \mathrm{r}=6 \mathrm{a}=2 \) and \( t=4 \). c \( A=A\left(\frac{a+b}{2}\right) \) Solve for \( = \) given \( s=20, t=2 \) and \( a=4 \). d \( A=r\left(1+\frac{r}{100}\right) \) Solve for \( b \) given \( A=10 h=4 \) and \( a=3 \) Solve for \( r \) given \( A=1000 \) and \( P=8 \times 0 \) 8 The perimeter of a square is \( 9 f \mathrm{~cm} \). Determinc its side iength. 9. The sum of two consccutive \( \mathrm{S}^{\mathrm{m}} \) Joen is 35 . What are the numbers 10) I ride four times fiver than 1 jog. If a trip took me 45 minuter and 1 spent 15 of thece mimute jogering 3 km . how far did 1 ride?

Ask by Daniels Mcguire. in Australia
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Problem 7 Solutions:** a. \( x = 10 \) b. \( s = 24 \) c. \( b = 16 \) d. \( r = 25\% \) **Problem 8:** Each side of the square is **2.25 cm**. **Problem 9:** The numbers are **17** and **18**. **Problem 10:** You rode **24 kilometers**.

Solución

Certainly! Let's tackle each of the problems step by step. --- ## **Problem 7** **Substitute the given values and solve for the unknown in each of the following formulas.** ### **a. \( x = a + a t \)** **Given:** - \( a = 2 \) - \( t = 4 \) **Solution:** \[ x = a + a t = 2 + 2 \times 4 = 2 + 8 = 10 \] **Answer:** \( x = 10 \) --- ### **b. \( s = a t + \frac{1}{2} a t^2 \)** **Given:** - \( a = 2 \) - \( t = 4 \) **Solution:** \[ s = a t + \frac{1}{2} a t^2 = 2 \times 4 + \frac{1}{2} \times 2 \times 4^2 = 8 + \frac{1}{2} \times 2 \times 16 = 8 + 16 = 24 \] **Answer:** \( s = 24 \) --- ### **c. \( A = h \left( \frac{a + b}{2} \right) \)** *Note: There seems to be a typographical error in the original formula. It appears to be the area formula for a trapezoid:* \[ A = h \left( \frac{a + b}{2} \right) \] **Given:** - \( A = 20 \) - \( h = 2 \) - \( a = 4 \) **Find:** \( b \) **Solution:** \[ 20 = 2 \left( \frac{4 + b}{2} \right) \] \[ 20 = 2 \times \frac{4 + b}{2} \quad \Rightarrow \quad 20 = 4 + b \] \[ b = 20 - 4 = 16 \] **Answer:** \( b = 16 \) --- ### **d. \( A = P \left(1 + \frac{r}{100}\right) \)** *Note: Assuming the formula represents simple interest or a similar financial formula where \( A \) is the amount, \( P \) is the principal, and \( r \) is the rate.* **Given (for solving \( r \)):** - \( A = 1000 \) - \( P = 800 \) *(Assuming "P = 8 × 100 = 800" based on context)* **Find:** \( r \) **Solution:** \[ 1000 = 800 \left(1 + \frac{r}{100}\right) \] \[ \frac{1000}{800} = 1 + \frac{r}{100} \quad \Rightarrow \quad 1.25 = 1 + \frac{r}{100} \] \[ \frac{r}{100} = 1.25 - 1 = 0.25 \quad \Rightarrow \quad r = 0.25 \times 100 = 25\% \] **Answer:** \( r = 25\% \) --- ## **Problem 8** **The perimeter of a square is \( 9 \) cm. Determine its side length.** **Given:** - Perimeter (\( P \)) = 9 cm **Find:** Side length (\( s \)) **Solution:** \[ P = 4s \quad \Rightarrow \quad s = \frac{P}{4} = \frac{9}{4} = 2.25 \text{ cm} \] **Answer:** Each side of the square is **2.25 cm** long. --- ## **Problem 9** **The sum of two consecutive numbers is 35. What are the numbers?** **Let:** - First number = \( n \) - Second number = \( n + 1 \) **Given:** \[ n + (n + 1) = 35 \] \[ 2n + 1 = 35 \] \[ 2n = 35 - 1 = 34 \quad \Rightarrow \quad n = 17 \] **Numbers:** - First number = 17 - Second number = 17 + 1 = 18 **Answer:** The two consecutive numbers are **17** and **18**. --- ## **Problem 10** **I ride four times faster than I jog. If a trip took me 45 minutes and I spent 15 of those minutes jogging 3 km. How far did I ride?** **Given:** - Total trip time = 45 minutes - Jogging time = 15 minutes - Jogging distance = 3 km - Riding speed = 4 × jogging speed **Find:** Riding distance **Solution:** 1. **Calculate Jogging Speed:** \[ \text{Jogging Speed} = \frac{\text{Distance}}{\text{Time}} = \frac{3 \text{ km}}{15 \text{ minutes}} = \frac{3 \text{ km}}{0.25 \text{ hours}} = 12 \text{ km/h} \] 2. **Calculate Riding Speed:** \[ \text{Riding Speed} = 4 \times 12 \text{ km/h} = 48 \text{ km/h} \] 3. **Calculate Riding Time:** \[ \text{Riding Time} = \text{Total Time} - \text{Jogging Time} = 45 \text{ minutes} - 15 \text{ minutes} = 30 \text{ minutes} = 0.5 \text{ hours} \] 4. **Calculate Riding Distance:** \[ \text{Riding Distance} = \text{Speed} \times \text{Time} = 48 \text{ km/h} \times 0.5 \text{ hours} = 24 \text{ km} \] **Answer:** You rode **24 kilometers**. --- If you have any further questions or need additional clarification, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the equation \( x = a + at \) with the given values of \( a = 2 \) and \( t = 4 \), substitute the values: \( x = 2 + 2 \times 4 \) which simplifies to \( x = 2 + 8 = 10 \). For \( s = at + \frac{1}{2} a t^{2} \), plug in \( a = 2 \) and \( t = 4 \): \( s = 2 \times 4 + \frac{1}{2} \times 2 \times 4^2 \), leading to \( s = 8 + \frac{1}{2} \times 2 \times 16 = 8 + 16 = 24 \). Next, for \( A = A\left(\frac{a+b}{2}\right) \), rearranging gives you: \( A = \frac{20 + b}{2} \). Cross-multiply to find \( b \): \( 2A = 20 + b \). Thus, if \( A = 10 \), \( 20 = 20 + b \) implies \( b = 0 \). Now onto \( A = r\left(1 + \frac{r}{100}\right) \) with \( A = 10 \) and given \( h = 4 \): You get \( 10 = r(1 + \frac{3}{100})\). Simplifying yields \( r = \frac{10}{1.03} \approx 9.71\). Looking at the perimeter of a square given to be \( 9f \) cm, we recall that the perimeter \( P \) of a square is represented by \( P = 4s \) where \( s \) is the side length. Thus, setting \( 9f = 4s \) gives \( s = \frac{9f}{4} \approx 2.25f \) cm. For the consecutive integers that sum to 35, we can let the two numbers be \( x \) and \( x + 1 \). Setting up the equation \( x + (x + 1) = 35 \) simplifies to \( 2x + 1 = 35 \), leading to \( 2x = 34 \) and \( x = 17 \). Therefore, the two numbers are 17 and 18. Finally, if you rode "four times five more than" your jog, it becomes a distance equation along with time. If you jigged 3 km in 15 minutes, then you jog at 12 km/h, hence you have 30 minutes left. Therefore, if you rode for 30 minutes, you can determine how far by multiplying your riding speed by time, ultimately concluding that you rode for 12 km, as it's consistent with the rest of your given data!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad