The number of bacteria \( P(h) \) in a certain population increases according to the following function, where time \( h \) is measured in hours. \[ P(h)=2600 e^{0.06} \text { h } \] How many hours will it take for the number of bacteria to reach 3200 ? Round your answer to the nearest tenth, and do not round any intermediate computations.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To find out how many hours it will take for the bacteria to reach a population of 3200, we start with the equation: \[ P(h) = 2600 e^{0.06h} \] Setting this equal to 3200 gives us: \[ 3200 = 2600 e^{0.06h} \] Next, we divide both sides by 2600: \[ \frac{3200}{2600} = e^{0.06h} \] This simplifies to: \[ \frac{32}{26} = e^{0.06h} \] Calculating the fraction: \[ \frac{32}{26} = \frac{16}{13} \approx 1.230769 \] Now we take the natural logarithm of both sides: \[ \ln\left(\frac{16}{13}\right) = 0.06h \] Solving for \( h \): \[ h = \frac{\ln\left(\frac{16}{13}\right)}{0.06} \] Calculating \( \ln\left(\frac{16}{13}\right) \): \[ \ln\left(\frac{16}{13}\right) \approx 0.223143 \] Now we substitute this back into our equation for \( h \): \[ h = \frac{0.223143}{0.06} \approx 3.71872 \] Rounding to the nearest tenth, we find: \[ h \approx 3.7 \] So, it will take approximately **3.7 hours** for the number of bacteria to reach 3200.
