Pregunta
If \( f(x)=\sin ^{2} x \), find \( f^{\prime}(x) \) Find \( f^{\prime}(4) \)
Ask by Macdonald Harmon. in the United States
Feb 25,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
\( f^{\prime}(x) = \sin 2x \)
\( f^{\prime}(4) = \sin 8 \)
Solución
To differentiate f(x) = sin²x, we use the chain rule. Let u = sin x, so that f(x) = u². Then
f'(x) = 2u · (du/dx) = 2 sin x · cos x.
This expression can be simplified using the double-angle formula for sine (sin 2x = 2 sin x cos x). Thus, we have
f'(x) = sin 2x.
To find f'(4), substitute x = 4 into the derivative:
f'(4) = sin(2 · 4) = sin 8.
So, f'(4) = sin 8 (with x given in radians).
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Beyond the Answer
To find \( f'(x) \) for the function \( f(x) = \sin^2 x \), we can use the chain rule. The derivative is given by: \[ f'(x) = 2 \sin x \cos x = \sin(2x). \] Now, to find \( f'(4) \), we substitute \( x = 4 \) into the derivative: \[ f'(4) = \sin(2 \cdot 4) = \sin(8). \] Thus, the derivative \( f'(4) = \sin(8) \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium