Pregunta
upstudy study bank question image url

2. Evaluate \( \int \frac{5 x^{2}-3 x+2}{x^{3}-2 x^{2}} d x \)

Ask by Martin Evans. in the United States
Feb 23,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The integral of \( \frac{5x^{2}-3x+2}{x^{3}-2x^{2}} \) with respect to \( x \) is \( \frac{1}{x} + \ln((x-2)^{4}|x|) + C \), where \( C \) is a constant.

Solución

Calculate the integral \( \int \frac{5x^{2}-3x+2}{x^{3}-2x^{2}}dx \). Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int \frac{5x^{2}-3x+2}{x^{3}-2x^{2}} dx\) - step1: Rewrite the fraction: \(\int \left(-\frac{1}{x^{2}}+\frac{1}{x}+\frac{4}{x-2}\right) dx\) - step2: Use properties of integrals: \(\int -\frac{1}{x^{2}} dx+\int \frac{1}{x} dx+\int \frac{4}{x-2} dx\) - step3: Evaluate the integral: \(\frac{1}{x}+\int \frac{1}{x} dx+\int \frac{4}{x-2} dx\) - step4: Evaluate the integral: \(\frac{1}{x}+\ln{\left(\left|x\right|\right)}+\int \frac{4}{x-2} dx\) - step5: Evaluate the integral: \(\frac{1}{x}+\ln{\left(\left|x\right|\right)}+4\ln{\left(\left|x-2\right|\right)}\) - step6: Add the terms: \(\frac{1}{x}+\ln{\left(\left(x-2\right)^{4}\left|x\right|\right)}\) - step7: Add the constant of integral C: \(\frac{1}{x}+\ln{\left(\left(x-2\right)^{4}\left|x\right|\right)} + C, C \in \mathbb{R}\) The integral of \( \frac{5x^{2}-3x+2}{x^{3}-2x^{2}} \) with respect to \( x \) is \( \frac{1}{x} + \ln((x-2)^{4}|x|) + C \), where \( C \) is an arbitrary constant.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To evaluate the integral \( \int \frac{5 x^{2}-3 x+2}{x^{3}-2 x^{2}} d x \), we start by simplifying the integrand: First, factor the denominator: \[ x^3 - 2x^2 = x^2(x - 2). \] Thus, the integrand becomes: \[ \frac{5x^2 - 3x + 2}{x^2(x - 2)}. \] Next, we can perform polynomial long division or partial fraction decomposition. The degree of the numerator is less than that of the denominator after factoring out \( x^2 \). So, we can write: \[ \frac{5x^2 - 3x + 2}{x^2(x - 2)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x - 2}, \] where \( A \), \( B \), and \( C \) are constants to be determined. Multiplying through by \( x^2(x - 2) \) gives: \[ 5x^2 - 3x + 2 = A(x)(x - 2) + B(x - 2) + C(x^2). \] Expanding the right side: \[ A(x^2 - 2x) + B(x - 2) + Cx^2 = (A + C)x^2 + (-2A + B)x - 2B. \] Setting this equal to \( 5x^2 - 3x + 2 \), we equate coefficients: 1. \( A + C = 5 \) 2. \( -2A + B = -3 \) 3. \( -2B = 2 \) (which implies \( B = -1 \)) Now, substituting \( B = -1 \) into the second equation: \[ -2A - 1 = -3 \implies -2A = -2 \implies A = 1. \] Now substituting \( A = 1 \) into the first equation: \[ 1 + C = 5 \implies C = 4. \] So we have \( A = 1 \), \( B = -1 \), and \( C = 4 \). Thus, the partial fraction decomposition is: \[ \frac{1}{x} - \frac{1}{x^2} + \frac{4}{x - 2}. \] Now, we can integrate term by term: \[ \int \left( \frac{1}{x} - \frac{1}{x^2} + \frac{4}{x - 2} \right) dx = \ln |x| + \frac{1}{x} + 4 \ln |x - 2| + C, \] where \( C \) is the constant of integration. Putting it all together, the evaluated integral is: \[ \int \frac{5 x^{2}-3 x+2}{x^{3}-2 x^{2}} d x = \ln |x| + \frac{1}{x} + 4 \ln |x - 2| + C. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad