Pregunta
upstudy study bank question image url

46 Jennifer painted a tabletop that is shaped like a circle. The circumference of the tabletop is \( 6 \pi \) feet. Which measurement is dosest to the area of the tabletop In square feet? F \( 18.84 \mathrm{ft}^{2} \) G \( 28.26 \mathrm{ft}^{2} \) H \( 37.68 \mathrm{ft}^{2} \) J \( 113.04 \mathrm{ft}^{2} \)

Ask by Patel Gough. in the United States
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The area of the tabletop is approximately 28.26 square feet, which is option G.

Solución

The circumference of a circle is given by the formula C = 2πr. Given that the circumference is 6π:   2πr = 6π   r = (6π) / (2π) = 3 feet Now, the area of a circle is A = πr². Plugging in the obtained radius:   A = π(3)² = 9π   A ≈ 9 × 3.14 = 28.26 square feet Thus, the answer closest to the area is 28.26 ft², which corresponds to option G.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the area of the circular tabletop, we first need to determine its radius. The circumference \( C \) of a circle is given by the formula \( C = 2\pi r \). Given that \( C = 6\pi \) feet, we can set up the equation: \[ 6\pi = 2\pi r \] Dividing both sides by \( 2\pi \) gives us: \[ r = 3 \text{ feet} \] Now, we can calculate the area \( A \) using the formula \( A = \pi r^2 \): \[ A = \pi (3^2) = 9\pi \text{ square feet} \] Using the approximation \( \pi \approx 3.14 \): \[ A \approx 9 \times 3.14 \approx 28.26 \text{ square feet} \] So, the measurement closest to the area of the tabletop is **G \( 28.26 \text{ ft}^2 \)**! If you’re ever faced with calculating the area of a circle, remember: it's all about the radius — half the diameter — and using that cute little π! You’ll be impressing your friends with your circle skills in no time. Speaking of circles, did you know the ancient Greeks were the first to theoretically derive the value of π? They approximated it with various methods, but it was Archimedes who came up with a remarkable geometric approach, realizing it could be estimated by inscribing and circumscribing polygons around a circle! Math magic is timeless!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad