Multiply. \[ [x-(6+2 i)][x-(6-2 i)] \] Note that these expressions contain complex numbers. Simplify your answer as much as possible.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To multiply the given expressions \( [x - (6 + 2i)][x - (6 - 2i)] \), we can first expand using the distributive property. Let \( a = x - (6 + 2i) \) and \( b = x - (6 - 2i) \). Thus, we have: \[ ab = (x - 6 - 2i)(x - 6 + 2i) \] This expression represents the product of a complex number and its conjugate. We can use the difference of squares formula, \( (a - b)(a + b) = a^2 - b^2 \), with \( a = x - 6 \) and \( b = 2i \): \[ (x - 6)^2 - (2i)^2 \] Calculating \( (2i)^2 \): \[ (2i)^2 = 4i^2 = 4(-1) = -4 \] Now, substituting this back into the expression: \[ (x - 6)^2 - (-4) = (x - 6)^2 + 4 \] Next, we expand \( (x - 6)^2 \): \[ (x - 6)^2 = x^2 - 12x + 36 \] Adding the 4 gives: \[ x^2 - 12x + 36 + 4 = x^2 - 12x + 40 \] Thus, the simplified result is: \[ \boxed{x^2 - 12x + 40} \]
