Pregunta
upstudy study bank question image url

a) \( \left\{\begin{array}{l}(\lambda-1) x+2 y-2=0 \\ (\lambda-2) x+(\lambda-1) y=1\end{array}\right. \)

Ask by Chen Powell. in Greece
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The system of equations has infinitely many solutions.

Solución

Solve the system of equations \( (\lambda-1)x+2y-2=0;(\lambda-2)x+(\lambda-1)y=1 \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}\left(\lambda -1\right)x+2y-2=0\\\left(\lambda -2\right)x+\left(\lambda -1\right)y=1\end{array}\right.\) - step1: Calculate: \(\left\{ \begin{array}{l}x\left(\lambda -1\right)+2y-2=0\\x\left(\lambda -2\right)+y\left(\lambda -1\right)=1\end{array}\right.\) - step2: Solve the equation: \(\left\{ \begin{array}{l}y=\frac{-\lambda x+x+2}{2}\\x\left(\lambda -2\right)+y\left(\lambda -1\right)=1\end{array}\right.\) - step3: Substitute the value of \(y:\) \(x\left(\lambda -2\right)+\frac{-\lambda x+x+2}{2}\times \left(\lambda -1\right)=1\) - step4: Simplify: \(x\lambda -2x+\frac{\left(-\lambda x+x+2\right)\left(\lambda -1\right)}{2}=1\) - step5: Evaluate: \(\lambda x-2x+\frac{\left(\lambda -1\right)\left(-\lambda x+x+2\right)}{2}=1\) - step6: Multiply both sides of the equation by LCD: \(\left(\lambda x-2x+\frac{\left(\lambda -1\right)\left(-\lambda x+x+2\right)}{2}\right)\times 2=1\times 2\) - step7: Simplify the equation: \(2\lambda x-4x+\left(-\lambda ^{2}+\lambda \right)x+\left(\lambda -1\right)x+2\lambda -2=2\) - step8: Simplify: \(\left(4\lambda -5-\lambda ^{2}\right)x+2\lambda -2=2\) - step9: Move the constant to the right side: \(\left(4\lambda -5-\lambda ^{2}\right)x=2-\left(2\lambda -2\right)\) - step10: Subtract the terms: \(\left(4\lambda -5-\lambda ^{2}\right)x=4-2\lambda \) - step11: Divide both sides: \(\frac{\left(4\lambda -5-\lambda ^{2}\right)x}{4\lambda -5-\lambda ^{2}}=\frac{4-2\lambda }{4\lambda -5-\lambda ^{2}}\) - step12: Divide the numbers: \(x=\frac{4-2\lambda }{4\lambda -5-\lambda ^{2}}\) - step13: Substitute the value of \(x:\) \(y=\frac{-\lambda \times \frac{4-2\lambda }{4\lambda -5-\lambda ^{2}}+\frac{4-2\lambda }{4\lambda -5-\lambda ^{2}}+2}{2}\) - step14: Simplify: \(y=\frac{\lambda -3}{4\lambda -5-\lambda ^{2}}\) - step15: Calculate: \(\left(\lambda,x,y\right) = \left(\lambda ,\frac{4-2\lambda }{4\lambda -5-\lambda ^{2}},\frac{\lambda -3}{4\lambda -5-\lambda ^{2}}\right),\lambda \in \mathbb{R}\) - step16: Alternative Form: \(\textrm{Infinitely many solutions}\) The system of equations has infinitely many solutions.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the system of equations \[ \begin{aligned} (\lambda-1)x + 2y &= 2 \quad \quad (1) \\ (\lambda-2)x + (\lambda-1)y &= 1 \quad \quad (2) \end{aligned} \] we'll represent it in matrix form and consider the determinant to discuss the conditions for consistent solutions. The determinant can become zero for certain values of \( \lambda \), which may indicate no solutions or infinitely many solutions. By setting up the augmented matrix and finding the determinant, we get: \[ \begin{bmatrix} \lambda - 1 & 2 \\ \lambda - 2 & \lambda - 1 \end{bmatrix} \] The determinant is given by: \[ D = (\lambda - 1)(\lambda - 1) - 2(\lambda - 2) = \lambda^2 - 2\lambda + 1 - 2\lambda + 4 = \lambda^2 - 4\lambda + 5 \] This quadratic does not necessarily simplify to a zero but can be analyzed for roots. For the system to have a unique solution, we need \( D \neq 0 \). For \( D = 0 \), the discriminant \( (-4)^2 - 4 \times 1 \times 5 = 16 - 20 = -4 \) shows that this polynomial will always be positive, confirming that there are no values of \( \lambda \) where the determinant equals zero. Thus, there are infinitely many solutions. Substituting values of \( \lambda \) would allow further exploration of particular solutions. For \( \lambda = 1 \) and \( \lambda = 2 \) specifically, we obtain: 1. For \( \lambda = 1 \): The system becomes inconsistent if tried directly by substitution. 2. For \( \lambda = 2 \): The equations collapse to a single line due to dependability. Thus there are infinitely many solutions. Hence, solving for all potential values of \( \lambda \) confirms a unique result every time, guiding further analysis in each special case.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad