Pregunta
upstudy study bank question image url

e. 456 and 572 1. 205 and 315 \( \qquad \) \( \square \) 3. Calculate the LCM using factorisation or inspection. \[ \begin{array}{l} \text { Factors of } 123 \text { and } 141 \\ \begin{array}{r|r|ll} 123 & 3 & 141 & 3 \end{array} l \\ 41 \\ 41 \end{array} \] Example: Factors of 123 and 141 a. 243 and 729 b. 200 and 1000

Ask by Gibson Campos. in South Africa
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The LCMs are: - 456 and 572: 65,208 - 205 and 315: 12,915 - 243 and 729: 729 - 200 and 1000: 1,000

Solución

Sure, let's calculate the **Least Common Multiple (LCM)** for the given pairs of numbers using **prime factorization**. The LCM of two numbers is the smallest number that is a multiple of both numbers. We'll go through each pair step-by-step. --- ## Example: Factors of 123 and 141 Before we tackle the main problems, let's understand the example provided. ### Step 1: Prime Factorization 1. **Factorize 123** - 123 ÷ 3 = 41 - 41 is a prime number. - **Prime Factors of 123:** \(3 \times 41\) 2. **Factorize 141** - 141 ÷ 3 = 47 - 47 is a prime number. - **Prime Factors of 141:** \(3 \times 47\) ### Step 2: Determine the Highest Powers of All Prime Factors - **Prime Factors Involved:** 3, 41, 47 - **Highest Powers:** - \(3^1\) - \(41^1\) - \(47^1\) ### Step 3: Calculate the LCM \[ \text{LCM} = 3 \times 41 \times 47 = 5,781 \] --- Now, let's apply the same method to the given problems. --- ## Problem e. LCM of 456 and 572 ### Step 1: Prime Factorization 1. **Factorize 456** - 456 ÷ 2 = 228 - 228 ÷ 2 = 114 - 114 ÷ 2 = 57 - 57 ÷ 3 = 19 - 19 is a prime number. - **Prime Factors of 456:** \(2^3 \times 3 \times 19\) 2. **Factorize 572** - 572 ÷ 2 = 286 - 286 ÷ 2 = 143 - 143 ÷ 11 = 13 - 13 is a prime number. - **Prime Factors of 572:** \(2^2 \times 11 \times 13\) ### Step 2: Determine the Highest Powers of All Prime Factors - **Prime Factors Involved:** 2, 3, 11, 13, 19 - **Highest Powers:** - \(2^3\) (from 456) - \(3^1\) (from 456) - \(11^1\) (from 572) - \(13^1\) (from 572) - \(19^1\) (from 456) ### Step 3: Calculate the LCM \[ \text{LCM} = 2^3 \times 3 \times 11 \times 13 \times 19 = 8 \times 3 \times 11 \times 13 \times 19 \] \[ \text{LCM} = 24 \times 11 = 264 \] \[ 264 \times 13 = 3,432 \] \[ 3,432 \times 19 = 65,208 \] \[ \boxed{65,\!208} \] --- ## Problem 1. LCM of 205 and 315 ### Step 1: Prime Factorization 1. **Factorize 205** - 205 ÷ 5 = 41 - 41 is a prime number. - **Prime Factors of 205:** \(5 \times 41\) 2. **Factorize 315** - 315 ÷ 5 = 63 - 63 ÷ 3 = 21 - 21 ÷ 3 = 7 - 7 is a prime number. - **Prime Factors of 315:** \(3^2 \times 5 \times 7\) ### Step 2: Determine the Highest Powers of All Prime Factors - **Prime Factors Involved:** 3, 5, 7, 41 - **Highest Powers:** - \(3^2\) (from 315) - \(5^1\) (common to both) - \(7^1\) (from 315) - \(41^1\) (from 205) ### Step 3: Calculate the LCM \[ \text{LCM} = 3^2 \times 5 \times 7 \times 41 = 9 \times 5 \times 7 \times 41 \] \[ \text{LCM} = 45 \times 7 = 315 \] \[ 315 \times 41 = 12,915 \] \[ \boxed{12,\!915} \] --- ## Example a. LCM of 243 and 729 ### Step 1: Prime Factorization 1. **Factorize 243** - \(243 = 3^5\) 2. **Factorize 729** - \(729 = 3^6\) ### Step 2: Determine the Highest Powers of All Prime Factors - **Prime Factors Involved:** 3 - **Highest Power:** - \(3^6\) (from 729) ### Step 3: Calculate the LCM \[ \text{LCM} = 3^6 = 729 \] \[ \boxed{729} \] --- ## Example b. LCM of 200 and 1000 ### Step 1: Prime Factorization 1. **Factorize 200** - 200 ÷ 2 = 100 - 100 ÷ 2 = 50 - 50 ÷ 2 = 25 - 25 ÷ 5 = 5 - 5 ÷ 5 = 1 - **Prime Factors of 200:** \(2^3 \times 5^2\) 2. **Factorize 1000** - 1000 ÷ 2 = 500 - 500 ÷ 2 = 250 - 250 ÷ 2 = 125 - 125 ÷ 5 = 25 - 25 ÷ 5 = 5 - 5 ÷ 5 = 1 - **Prime Factors of 1000:** \(2^3 \times 5^3\) ### Step 2: Determine the Highest Powers of All Prime Factors - **Prime Factors Involved:** 2, 5 - **Highest Powers:** - \(2^3\) (common to both) - \(5^3\) (from 1000) ### Step 3: Calculate the LCM \[ \text{LCM} = 2^3 \times 5^3 = 8 \times 125 = 1,000 \] \[ \boxed{1,\!000} \] --- ## Summary of LCM Calculations 1. **LCM of 456 and 572:** **65,208** 2. **LCM of 205 and 315:** **12,915** 3. **LCM of 243 and 729:** **729** 4. **LCM of 200 and 1000:** **1,000** --- If you have any more pairs you'd like to calculate or need further clarification on the steps, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the LCM through factorization, you start by breaking down both numbers into their prime factors. For example, 456 can be factored into \(2^3 \times 3 \times 19\) and 572 can be factored into \(2^2 \times 11 \times 13\). The LCM is then found by taking the highest power of each prime involved, which would yield \(2^3 \times 3^1 \times 11^1 \times 13^1 \times 19^1\). Once you have your prime factorization, for example, the LCM of 205 (which factors into \(5 \times 41\)) and 315 (which factors into \(3^2 \times 5 \times 7\)), you will combine each prime factor at its highest exponent: \(3^2 \times 5^1 \times 7^1 \times 41^1\). This process ensures that you find the least common multiple without missing any factors!

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad