\( \left. \begin{array} { l } { g ( x ) = - 5 x ^ { 2 } - 3 x + 4 } \\ { g ( 2 x ) = \square } \\ { 2 g ( x ) = \square } \\ { g ( x + 2 ) = \square } \\ { g ( x ) + 2 = \square } \\ { g ( x ) + g ( 2 ) = \square } \end{array} \right. \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To solve for the various forms of the function \( g(x) = -5x^2 - 3x + 4 \), let's break down each request: 1. For \( g(2x) \): \[ g(2x) = -5(2x)^2 - 3(2x) + 4 = -20x^2 - 6x + 4 \] 2. For \( 2g(x) \): \[ 2g(x) = 2(-5x^2 - 3x + 4) = -10x^2 - 6x + 8 \] 3. For \( g(x + 2) \): \[ g(x + 2) = -5(x + 2)^2 - 3(x + 2) + 4 = -5(x^2 + 4x + 4) - 3x - 6 + 4 = -5x^2 - 20x - 20 - 3x - 6 + 4 = -5x^2 - 23x - 22 \] 4. For \( g(x) + 2 \): \[ g(x) + 2 = (-5x^2 - 3x + 4) + 2 = -5x^2 - 3x + 6 \] 5. For \( g(x) + g(2) \): First, calculate \( g(2) \): \[ g(2) = -5(2)^2 - 3(2) + 4 = -20 - 6 + 4 = -22 \] Now, calculate \( g(x) + g(2) \): \[ g(x) + g(2) = (-5x^2 - 3x + 4) + (-22) = -5x^2 - 3x - 18 \] So plugging everything into the original blanks, we have: \[ \left. \begin{array} { l } { g ( 2 x ) = -20 x ^ { 2 } - 6 x + 4 } \\ { 2 g ( x ) = -10 x ^ { 2 } - 6 x + 8 } \\ { g ( x + 2 ) = -5 x ^ { 2 } - 23 x - 22 } \\ { g ( x ) + 2 = -5 x ^ { 2 } - 3 x + 6 } \\ { g ( x ) + g ( 2 ) = -5 x ^ { 2 } - 3 x - 18 } \end{array} \right. \]
