Pregunta
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
La limita es 15.
Solución
Calculate the limit \( \lim_{x\rightarrow -3} x^2 - 2x \).
Evaluate the limit by following steps:
- step0: Evaluate the limit:
\(\lim _{x\rightarrow -3}\left(x^{2}-2x\right)\)
- step1: Rewrite the expression:
\(\lim _{x\rightarrow -3}\left(x^{2}\right)-\lim _{x\rightarrow -3}\left(2x\right)\)
- step2: Calculate:
\(9-\left(-6\right)\)
- step3: Calculate:
\(15\)
La limita de \( x^2 - 2x \) cuando \( x \) se acerca a -3 es igual a 15.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Bonus Knowledge
To find the limit \( \lim_{x \rightarrow -3} (x^{2} - 2x) \), we start by substituting \(-3\) directly into the expression. We get: \[ (-3)^{2} - 2(-3) = 9 + 6 = 15. \] So, the limit is \( 15 \). To check the calculation, remember to break down the function: as \( x \) approaches \(-3\), both \( x^2 \) and \( -2x \) will approach specific values. This process is super useful in understanding how limits work, especially when evaluating polynomials!
preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium