Exampie 5.4 ron bars uy tha total mass of \( 3,5 \mathrm{~kg} \) are heated to 500 K and immediately placed in 28 kg water at 285 K Calculate the final temperature of the iron bars and the water. The heat capacity of steel is \( 46 \mathrm{~kJ} / \mathrm{kg} \mathrm{K} \).
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To solve this problem, we can use the principle of conservation of energy, which states that the heat lost by the warmer object (the iron bars) will be equal to the heat gained by the cooler object (the water). The formula for heat transfer is: \[ Q = mc\Delta T \] Where \( Q \) is the heat absorbed or released, \( m \) is the mass, \( c \) is the specific heat capacity, and \( \Delta T \) is the change in temperature. 1. **Iron Bars:** \[ Q_{\text{iron}} = m_{\text{iron}} \cdot c_{\text{iron}} \cdot (T_f - T_{\text{iron initial}}) \] \[ Q_{\text{iron}} = 3.5 \, \text{kg} \cdot 46 \, \text{kJ/kg K} \cdot (T_f - 500 \, K) \] \[ Q_{\text{iron}} = 161 \, \text{kJ/K} \cdot (T_f - 500) \] 2. **Water:** \[ Q_{\text{water}} = m_{\text{water}} \cdot c_{\text{water}} \cdot (T_f - T_{\text{water initial}}) \] This uses water's specific heat capacity, \( c_{\text{water}} = 4.186 \, \text{kJ/kg K} \): \[ Q_{\text{water}} = 28 \, \text{kg} \cdot 4.186 \, \text{kJ/kg K} \cdot (T_f - 285 \, K) \] \[ Q_{\text{water}} = 117.208 \, \text{kJ/K} \cdot (T_f - 285) \] 3. **Setting the heat gained by water equal to the heat lost by the iron:** \[ 161(T_f - 500) + 117.208(T_f - 285) = 0 \] 4. **Expanding the equation:** \[ 161T_f - 80500 + 117.208T_f - 33467.28 = 0 \] 5. **Combine like terms:** \[ (161 + 117.208)T_f = 80500 + 33467.28 \] \[ 278.208T_f = 113967.28 \] 6. **Solving for \( T_f \):** \[ T_f = \frac{113967.28}{278.208} \approx 409.3 \, K \] The final temperature of the iron bars and the water will be approximately \( 409.3 \, K \). And there you have it, the thermal dance complete!
