Pregunta
upstudy study bank question image url

Exampie 5.4 ron bars uy tha total mass of \( 3,5 \mathrm{~kg} \) are heated to 500 K and immediately placed in 28 kg water at 285 K Calculate the final temperature of the iron bars and the water. The heat capacity of steel is \( 46 \mathrm{~kJ} / \mathrm{kg} \mathrm{K} \).

Ask by Dickson Salinas. in South Africa
Nov 18,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The final temperature of the iron bars and the water is approximately \( 409.5 \, \text{K} \).

Solución

To find the final temperature of the iron bars and the water, we can use the principle of conservation of energy, which states that the heat lost by the iron bars will be equal to the heat gained by the water. Let: - \( m_{\text{iron}} = 3.5 \, \text{kg} \) (mass of the iron bars) - \( C_{\text{iron}} = 46 \, \text{kJ/kg K} \) (heat capacity of the iron bars) - \( T_{\text{initial, iron}} = 500 \, \text{K} \) (initial temperature of the iron bars) - \( m_{\text{water}} = 28 \, \text{kg} \) (mass of the water) - \( C_{\text{water}} = 4.186 \, \text{kJ/kg K} \) (heat capacity of water) - \( T_{\text{initial, water}} = 285 \, \text{K} \) (initial temperature of the water) - \( T_f \) = final temperature of the system The heat lost by the iron bars can be expressed as: \[ Q_{\text{lost}} = m_{\text{iron}} \cdot C_{\text{iron}} \cdot (T_{\text{initial, iron}} - T_f) \] The heat gained by the water can be expressed as: \[ Q_{\text{gained}} = m_{\text{water}} \cdot C_{\text{water}} \cdot (T_f - T_{\text{initial, water}}) \] According to the conservation of energy: \[ Q_{\text{lost}} = Q_{\text{gained}} \] Substituting the expressions for \( Q_{\text{lost}} \) and \( Q_{\text{gained}} \): \[ m_{\text{iron}} \cdot C_{\text{iron}} \cdot (T_{\text{initial, iron}} - T_f) = m_{\text{water}} \cdot C_{\text{water}} \cdot (T_f - T_{\text{initial, water}}) \] Now substituting the known values: \[ 3.5 \, \text{kg} \cdot 46 \, \text{kJ/kg K} \cdot (500 \, \text{K} - T_f) = 28 \, \text{kg} \cdot 4.186 \, \text{kJ/kg K} \cdot (T_f - 285 \, \text{K}) \] Calculating the left side: \[ 3.5 \cdot 46 = 161 \, \text{kJ/K} \] So, \[ 161 \cdot (500 - T_f) = 28 \cdot 4.186 \cdot (T_f - 285) \] Calculating the right side: \[ 28 \cdot 4.186 = 117.208 \, \text{kJ/K} \] So, \[ 161 \cdot (500 - T_f) = 117.208 \cdot (T_f - 285) \] Expanding both sides: \[ 80500 - 161 T_f = 117.208 T_f - 33466.88 \] Rearranging the equation: \[ 80500 + 33466.88 = 161 T_f + 117.208 T_f \] \[ 113966.88 = 278.208 T_f \] Now, solving for \( T_f \): \[ T_f = \frac{113966.88}{278.208} \approx 409.5 \, \text{K} \] Thus, the final temperature of the iron bars and the water is approximately \( 409.5 \, \text{K} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve this problem, we can use the principle of conservation of energy, which states that the heat lost by the warmer object (the iron bars) will be equal to the heat gained by the cooler object (the water). The formula for heat transfer is: \[ Q = mc\Delta T \] Where \( Q \) is the heat absorbed or released, \( m \) is the mass, \( c \) is the specific heat capacity, and \( \Delta T \) is the change in temperature. 1. **Iron Bars:** \[ Q_{\text{iron}} = m_{\text{iron}} \cdot c_{\text{iron}} \cdot (T_f - T_{\text{iron initial}}) \] \[ Q_{\text{iron}} = 3.5 \, \text{kg} \cdot 46 \, \text{kJ/kg K} \cdot (T_f - 500 \, K) \] \[ Q_{\text{iron}} = 161 \, \text{kJ/K} \cdot (T_f - 500) \] 2. **Water:** \[ Q_{\text{water}} = m_{\text{water}} \cdot c_{\text{water}} \cdot (T_f - T_{\text{water initial}}) \] This uses water's specific heat capacity, \( c_{\text{water}} = 4.186 \, \text{kJ/kg K} \): \[ Q_{\text{water}} = 28 \, \text{kg} \cdot 4.186 \, \text{kJ/kg K} \cdot (T_f - 285 \, K) \] \[ Q_{\text{water}} = 117.208 \, \text{kJ/K} \cdot (T_f - 285) \] 3. **Setting the heat gained by water equal to the heat lost by the iron:** \[ 161(T_f - 500) + 117.208(T_f - 285) = 0 \] 4. **Expanding the equation:** \[ 161T_f - 80500 + 117.208T_f - 33467.28 = 0 \] 5. **Combine like terms:** \[ (161 + 117.208)T_f = 80500 + 33467.28 \] \[ 278.208T_f = 113967.28 \] 6. **Solving for \( T_f \):** \[ T_f = \frac{113967.28}{278.208} \approx 409.3 \, K \] The final temperature of the iron bars and the water will be approximately \( 409.3 \, K \). And there you have it, the thermal dance complete!

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad