Pregunta
upstudy study bank question image url

The number of bacteria in a culture is increasing according to the law of exponential growth. After 2 hours, there are 50 bacteria, and after 4 hours, there are 200 bacteria. How many bacteria will there after 6 hours? 400 Need Help? Racteria SUBMIT ANSWEA

Ask by Salinas Kelley. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After 6 hours, there will be 800 bacteria.

Solución

Let the number of bacteria at time t be given by the exponential growth model   N(t) = N₀ · e^(kt), where N₀ is the initial number (at time t = 0) and k is the constant growth rate. We are given:  • N(2) = 50  • N(4) = 200 Step 1. Write the equations for t = 2 and t = 4:   N(2) = N₀ · e^(2k) = 50   (1)   N(4) = N₀ · e^(4k) = 200   (2) Step 2. Divide equation (2) by equation (1) to eliminate N₀:   [N₀ · e^(4k)] / [N₀ · e^(2k)] = 200/50 Simplify:   e^(4k − 2k) = 4   e^(2k) = 4 Step 3. Solve for k:   Take the natural logarithm of both sides:   2k = ln 4   k = (ln 4) / 2 Step 4. We want the number after 6 hours, N(6):   N(6) = N₀ · e^(6k) To find N₀, use equation (1):   N₀ = 50 / e^(2k) Now substitute back into the equation for N(6):   N(6) = [50 / e^(2k)] · e^(6k) = 50 · e^(4k) Since we already found that e^(2k) = 4, then:   e^(4k) = (e^(2k))² = 4² = 16 Thus:   N(6) = 50 · 16 = 800 Therefore, after 6 hours, there will be 800 bacteria.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The growth of bacteria can be modeled using the equation \( N(t) = N_0 e^{rt} \), where \( N(t) \) is the number of bacteria at time \( t \), \( N_0 \) is the initial amount, \( r \) is the growth rate, and \( t \) is the time in hours. Given that we have data for 2 and 4 hours, we can derive the growth rate and project the population. From the data, we can see the number of bacteria doubles every 2 hours: 50 at 2 hours and 200 at 4 hours. So, after 6 hours, we can expect the number of bacteria to double again to 400. It's a classic example of exponential growth, where rapid increases can happen over short periods!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad