SAT scores: A college admissions officer takes a simple random sample of 100 entering freshmen and computes their mean mathematics SAT score to be 452 . Assume the population standard deviation is \( \sigma=115 \). Part: \( 0 / 4 \) Part 1 of 4 (a) Construct a \( 95 \% \) confidence interval for the mean mathematics SAT score for the entering freshman class. Round the answer to the nearest whole number. A \( 95 \% \) confidence interval for the mean mathematics SAT score is (
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To construct a 95% confidence interval for the mean mathematics SAT score, you start with the sample mean (452) and use the formula for the confidence interval: \[ CI = \bar{x} \pm z \left( \frac{\sigma}{\sqrt{n}} \right) \] Here, \(\bar{x} = 452\), \(\sigma = 115\), and \(n = 100\). For a 95% confidence level, the z-value is approximately 1.96. Now, calculate the standard error: \[ SE = \frac{115}{\sqrt{100}} = \frac{115}{10} = 11.5 \] Now plug this into the confidence interval formula: \[ CI = 452 \pm 1.96 \times 11.5 \] Calculating the margin of error: \[ 1.96 \times 11.5 = 22.54 \] Now compute the confidence interval: \[ CI = (452 - 22.54, 452 + 22.54) = (429.46, 474.54) \] Rounding to the nearest whole number, the 95% confidence interval is \( (429, 475) \). A \( 95\% \) confidence interval for the mean mathematics SAT score is \( (429, 475) \).
