Use the Chain Rule to find the derivative of the function \[ y=\left(x^{3}+9 x^{2}\right)^{-1} \]
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the derivative of the function \( y=\left(x^{3}+9 x^{2}\right)^{-1} \) using the Chain Rule, we first identify that we can consider this as \( y = (u)^{-1} \) where \( u = x^3 + 9x^2 \). Now, applying the Chain Rule, we get: \[ \frac{dy}{dx} = -u^{-2} \cdot \frac{du}{dx} \] Next, we compute \( \frac{du}{dx} \): \[ u = x^3 + 9x^2 \quad \Rightarrow \quad \frac{du}{dx} = 3x^2 + 18x \] Now substitute back into the derivative: \[ \frac{dy}{dx} = - (x^3 + 9x^2)^{-2} (3x^2 + 18x) \] So, the final answer for the derivative is: \[ \frac{dy}{dx} = -\frac{3x^2 + 18x}{(x^3 + 9x^2)^{2}} \]