Pregunta
upstudy study bank question image url

\begin{tabular}{l} Working at home: According to the U.S. Census Bureau, \( 34 \% \) of men who worked at home were college graduates. In a sample of 500 women who worked at \\ home, 170 were college graduates. \\ Part: \( 0 / 3 \) \\ Part 1 of 3 \\ (a) Find a point estimate for the proportion of college graduates among women who work at home. Round the answer to at least three decimal places. \\ The point estimate for the proportion of college graduates among women who work at home is 0.340 , \\ Part: \( 1 / 3 \) \\ Part 2 of 3 \\ (b) Construct a \( 90 \% \) confidence interval for the proportion of women who work at home who are college graduates. Round the answer to at least three \\ decimal places. \\ A \( 90 \% \) conficence interval for the proportion of women who work at home who are college graduates is \( \square p<\square \) \\ \hline\end{tabular}

Ask by Alexander Mathis. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The point estimate for the proportion of college graduates among women who work at home is 0.340. A 90% confidence interval for this proportion is approximately 0.305 to 0.375.

Solución

We are given that 170 out of 500 women who worked at home were college graduates. Step 1. Point Estimate The point estimate (p̂) for the proportion is the sample proportion:   p̂ = 170 / 500 = 0.340 Step 2. Constructing a 90% Confidence Interval 1. Calculate the standard error (SE) for the proportion:   SE = √[(p̂(1 − p̂)) / n]   = √[(0.34 × 0.66) / 500]   = √(0.2244 / 500)   = √0.0004488 ≈ 0.021189 2. Determine the critical value for a 90% confidence level. For a 90% confidence interval, the z* value is approximately 1.645. 3. Calculate the margin of error (ME):   ME = z* × SE ≈ 1.645 × 0.021189 ≈ 0.03485 4. Compute the confidence interval:   Lower limit = p̂ − ME = 0.340 − 0.03485 ≈ 0.305   Upper limit = p̂ + ME = 0.340 + 0.03485 ≈ 0.375 Thus, a 90% confidence interval for the proportion of women who are college graduates when working at home is approximately (0.305, 0.375).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find a \( 90\% \) confidence interval for the proportion of college graduates among women who work at home, we start by calculating the point estimate, which in this case is \( \hat{p} = \frac{170}{500} = 0.340 \). Next, we need to calculate the standard error (SE) of the proportion: \[ SE = \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} = \sqrt{\frac{0.340(1 - 0.340)}{500}} \approx 0.0223 \] For a \( 90\% \) confidence level, the z-score is approximately \( 1.645 \). Now we can calculate the margin of error (ME): \[ ME = z \cdot SE \approx 1.645 \cdot 0.0223 \approx 0.0367 \] Finally, we construct the confidence interval: \[ CI = \hat{p} \pm ME = 0.340 \pm 0.0367 \] This gives us: \[ \text{Lower limit} = 0.340 - 0.0367 \approx 0.3033 \] \[ \text{Upper limit} = 0.340 + 0.0367 \approx 0.3767 \] Thus, rounding to three decimal places, we have: \[ 0.303 < p < 0.377 \] So, a \( 90\% \) confidence interval for the proportion of women who work at home who are college graduates is \( 0.303 < p < 0.377 \).

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad