Responder
The probability of getting 9 or more voters who would do internet voting out of 12 selected voters is approximately 0.9839. Since this probability is not low, 9 is significantly high.
Therefore, the correct choice is:
A. Yes, because the probability of 9 or more is **0.9839**, which is not low.
Solución
To determine if 9 is significantly high, we need to calculate the probability of getting 9 or more voters who would do internet voting out of 12 selected voters.
Given that 33% of likely voters would be willing to vote by internet, we can calculate the probability of getting 9 or more voters who would do internet voting using the binomial distribution formula.
The probability of getting exactly \( k \) successes in \( n \) trials, where the probability of success in each trial is \( p \), is given by the binomial distribution formula:
\[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \]
In this case, \( n = 12 \), \( k = 9 \), and \( p = 0.33 \).
Let's calculate the probability of getting 9 or more voters who would do internet voting:
\[ P(X \geq 9) = 1 - P(X < 9) \]
\[ P(X < 9) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8) \]
We will calculate each of these probabilities using the binomial distribution formula and then sum them up to find the probability of getting 9 or more voters who would do internet voting.
Let's calculate the probabilities:
Calculate the value by following steps:
- step0: Calculate:
\(1-\left(0.33^{0}\left(1-0.33\right)^{12}+0.33^{1}\left(1-0.33\right)^{11}+0.33^{2}\left(1-0.33\right)^{10}+0.33^{3}\left(1-0.33\right)^{9}+0.33^{4}\left(1-0.33\right)^{8}+0.33^{5}\left(1-0.33\right)^{7}+0.33^{6}\left(1-0.33\right)^{6}+0.33^{7}\left(1-0.33\right)^{5}+0.33^{8}\left(1-0.33\right)^{4}\right)\)
- step1: Evaluate the power:
\(1-\left(1\times \left(1-0.33\right)^{12}+0.33^{1}\left(1-0.33\right)^{11}+0.33^{2}\left(1-0.33\right)^{10}+0.33^{3}\left(1-0.33\right)^{9}+0.33^{4}\left(1-0.33\right)^{8}+0.33^{5}\left(1-0.33\right)^{7}+0.33^{6}\left(1-0.33\right)^{6}+0.33^{7}\left(1-0.33\right)^{5}+0.33^{8}\left(1-0.33\right)^{4}\right)\)
- step2: Subtract the numbers:
\(1-\left(1\times 0.67^{12}+0.33^{1}\left(1-0.33\right)^{11}+0.33^{2}\left(1-0.33\right)^{10}+0.33^{3}\left(1-0.33\right)^{9}+0.33^{4}\left(1-0.33\right)^{8}+0.33^{5}\left(1-0.33\right)^{7}+0.33^{6}\left(1-0.33\right)^{6}+0.33^{7}\left(1-0.33\right)^{5}+0.33^{8}\left(1-0.33\right)^{4}\right)\)
- step3: Subtract the numbers:
\(1-\left(1\times 0.67^{12}+0.33^{1}\times 0.67^{11}+0.33^{2}\left(1-0.33\right)^{10}+0.33^{3}\left(1-0.33\right)^{9}+0.33^{4}\left(1-0.33\right)^{8}+0.33^{5}\left(1-0.33\right)^{7}+0.33^{6}\left(1-0.33\right)^{6}+0.33^{7}\left(1-0.33\right)^{5}+0.33^{8}\left(1-0.33\right)^{4}\right)\)
- step4: Subtract the numbers:
\(1-\left(1\times 0.67^{12}+0.33^{1}\times 0.67^{11}+0.33^{2}\times 0.67^{10}+0.33^{3}\left(1-0.33\right)^{9}+0.33^{4}\left(1-0.33\right)^{8}+0.33^{5}\left(1-0.33\right)^{7}+0.33^{6}\left(1-0.33\right)^{6}+0.33^{7}\left(1-0.33\right)^{5}+0.33^{8}\left(1-0.33\right)^{4}\right)\)
- step5: Subtract the numbers:
\(1-\left(1\times 0.67^{12}+0.33^{1}\times 0.67^{11}+0.33^{2}\times 0.67^{10}+0.33^{3}\times 0.67^{9}+0.33^{4}\left(1-0.33\right)^{8}+0.33^{5}\left(1-0.33\right)^{7}+0.33^{6}\left(1-0.33\right)^{6}+0.33^{7}\left(1-0.33\right)^{5}+0.33^{8}\left(1-0.33\right)^{4}\right)\)
- step6: Subtract the numbers:
\(1-\left(1\times 0.67^{12}+0.33^{1}\times 0.67^{11}+0.33^{2}\times 0.67^{10}+0.33^{3}\times 0.67^{9}+0.33^{4}\times 0.67^{8}+0.33^{5}\left(1-0.33\right)^{7}+0.33^{6}\left(1-0.33\right)^{6}+0.33^{7}\left(1-0.33\right)^{5}+0.33^{8}\left(1-0.33\right)^{4}\right)\)
- step7: Subtract the numbers:
\(1-\left(1\times 0.67^{12}+0.33^{1}\times 0.67^{11}+0.33^{2}\times 0.67^{10}+0.33^{3}\times 0.67^{9}+0.33^{4}\times 0.67^{8}+0.33^{5}\times 0.67^{7}+0.33^{6}\left(1-0.33\right)^{6}+0.33^{7}\left(1-0.33\right)^{5}+0.33^{8}\left(1-0.33\right)^{4}\right)\)
- step8: Subtract the numbers:
\(1-\left(1\times 0.67^{12}+0.33^{1}\times 0.67^{11}+0.33^{2}\times 0.67^{10}+0.33^{3}\times 0.67^{9}+0.33^{4}\times 0.67^{8}+0.33^{5}\times 0.67^{7}+0.33^{6}\times 0.67^{6}+0.33^{7}\left(1-0.33\right)^{5}+0.33^{8}\left(1-0.33\right)^{4}\right)\)
- step9: Subtract the numbers:
\(1-\left(1\times 0.67^{12}+0.33^{1}\times 0.67^{11}+0.33^{2}\times 0.67^{10}+0.33^{3}\times 0.67^{9}+0.33^{4}\times 0.67^{8}+0.33^{5}\times 0.67^{7}+0.33^{6}\times 0.67^{6}+0.33^{7}\times 0.67^{5}+0.33^{8}\left(1-0.33\right)^{4}\right)\)
- step10: Subtract the numbers:
\(1-\left(1\times 0.67^{12}+0.33^{1}\times 0.67^{11}+0.33^{2}\times 0.67^{10}+0.33^{3}\times 0.67^{9}+0.33^{4}\times 0.67^{8}+0.33^{5}\times 0.67^{7}+0.33^{6}\times 0.67^{6}+0.33^{7}\times 0.67^{5}+0.33^{8}\times 0.67^{4}\right)\)
- step11: Convert the expressions:
\(1-\left(1\times \left(\frac{67}{100}\right)^{12}+0.33^{1}\times 0.67^{11}+0.33^{2}\times 0.67^{10}+0.33^{3}\times 0.67^{9}+0.33^{4}\times 0.67^{8}+0.33^{5}\times 0.67^{7}+0.33^{6}\times 0.67^{6}+0.33^{7}\times 0.67^{5}+0.33^{8}\times 0.67^{4}\right)\)
- step12: Calculate:
\(1-\left(1\times \left(\frac{67}{100}\right)^{12}+\frac{33}{100}\times 0.67^{11}+0.33^{2}\times 0.67^{10}+0.33^{3}\times 0.67^{9}+0.33^{4}\times 0.67^{8}+0.33^{5}\times 0.67^{7}+0.33^{6}\times 0.67^{6}+0.33^{7}\times 0.67^{5}+0.33^{8}\times 0.67^{4}\right)\)
- step13: Convert the expressions:
\(1-\left(1\times \left(\frac{67}{100}\right)^{12}+\frac{33}{100}\left(\frac{67}{100}\right)^{11}+0.33^{2}\times 0.67^{10}+0.33^{3}\times 0.67^{9}+0.33^{4}\times 0.67^{8}+0.33^{5}\times 0.67^{7}+0.33^{6}\times 0.67^{6}+0.33^{7}\times 0.67^{5}+0.33^{8}\times 0.67^{4}\right)\)
- step14: Convert the expressions:
\(1-\left(1\times \left(\frac{67}{100}\right)^{12}+\frac{33}{100}\left(\frac{67}{100}\right)^{11}+\left(\frac{33}{100}\right)^{2}\times 0.67^{10}+0.33^{3}\times 0.67^{9}+0.33^{4}\times 0.67^{8}+0.33^{5}\times 0.67^{7}+0.33^{6}\times 0.67^{6}+0.33^{7}\times 0.67^{5}+0.33^{8}\times 0.67^{4}\right)\)
- step15: Convert the expressions:
\(1-\left(1\times \left(\frac{67}{100}\right)^{12}+\frac{33}{100}\left(\frac{67}{100}\right)^{11}+\left(\frac{33}{100}\right)^{2}\left(\frac{67}{100}\right)^{10}+0.33^{3}\times 0.67^{9}+0.33^{4}\times 0.67^{8}+0.33^{5}\times 0.67^{7}+0.33^{6}\times 0.67^{6}+0.33^{7}\times 0.67^{5}+0.33^{8}\times 0.67^{4}\right)\)
- step16: Convert the expressions:
\(1-\left(1\times \left(\frac{67}{100}\right)^{12}+\frac{33}{100}\left(\frac{67}{100}\right)^{11}+\left(\frac{33}{100}\right)^{2}\left(\frac{67}{100}\right)^{10}+\left(\frac{33}{100}\right)^{3}\times 0.67^{9}+0.33^{4}\times 0.67^{8}+0.33^{5}\times 0.67^{7}+0.33^{6}\times 0.67^{6}+0.33^{7}\times 0.67^{5}+0.33^{8}\times 0.67^{4}\right)\)
- step17: Convert the expressions:
\(1-\left(1\times \left(\frac{67}{100}\right)^{12}+\frac{33}{100}\left(\frac{67}{100}\right)^{11}+\left(\frac{33}{100}\right)^{2}\left(\frac{67}{100}\right)^{10}+\left(\frac{33}{100}\right)^{3}\left(\frac{67}{100}\right)^{9}+0.33^{4}\times 0.67^{8}+0.33^{5}\times 0.67^{7}+0.33^{6}\times 0.67^{6}+0.33^{7}\times 0.67^{5}+0.33^{8}\times 0.67^{4}\right)\)
- step18: Convert the expressions:
\(1-\left(1\times \left(\frac{67}{100}\right)^{12}+\frac{33}{100}\left(\frac{67}{100}\right)^{11}+\left(\frac{33}{100}\right)^{2}\left(\frac{67}{100}\right)^{10}+\left(\frac{33}{100}\right)^{3}\left(\frac{67}{100}\right)^{9}+\left(\frac{33}{100}\right)^{4}\times 0.67^{8}+0.33^{5}\times 0.67^{7}+0.33^{6}\times 0.67^{6}+0.33^{7}\times 0.67^{5}+0.33^{8}\times 0.67^{4}\right)\)
- step19: Convert the expressions:
\(1-\left(1\times \left(\frac{67}{100}\right)^{12}+\frac{33}{100}\left(\frac{67}{100}\right)^{11}+\left(\frac{33}{100}\right)^{2}\left(\frac{67}{100}\right)^{10}+\left(\frac{33}{100}\right)^{3}\left(\frac{67}{100}\right)^{9}+\left(\frac{33}{100}\right)^{4}\left(\frac{67}{100}\right)^{8}+0.33^{5}\times 0.67^{7}+0.33^{6}\times 0.67^{6}+0.33^{7}\times 0.67^{5}+0.33^{8}\times 0.67^{4}\right)\)
- step20: Convert the expressions:
\(1-\left(1\times \left(\frac{67}{100}\right)^{12}+\frac{33}{100}\left(\frac{67}{100}\right)^{11}+\left(\frac{33}{100}\right)^{2}\left(\frac{67}{100}\right)^{10}+\left(\frac{33}{100}\right)^{3}\left(\frac{67}{100}\right)^{9}+\left(\frac{33}{100}\right)^{4}\left(\frac{67}{100}\right)^{8}+\left(\frac{33}{100}\right)^{5}\times 0.67^{7}+0.33^{6}\times 0.67^{6}+0.33^{7}\times 0.67^{5}+0.33^{8}\times 0.67^{4}\right)\)
- step21: Convert the expressions:
\(1-\left(1\times \left(\frac{67}{100}\right)^{12}+\frac{33}{100}\left(\frac{67}{100}\right)^{11}+\left(\frac{33}{100}\right)^{2}\left(\frac{67}{100}\right)^{10}+\left(\frac{33}{100}\right)^{3}\left(\frac{67}{100}\right)^{9}+\left(\frac{33}{100}\right)^{4}\left(\frac{67}{100}\right)^{8}+\left(\frac{33}{100}\right)^{5}\left(\frac{67}{100}\right)^{7}+0.33^{6}\times 0.67^{6}+0.33^{7}\times 0.67^{5}+0.33^{8}\times 0.67^{4}\right)\)
- step22: Convert the expressions:
\(1-\left(1\times \left(\frac{67}{100}\right)^{12}+\frac{33}{100}\left(\frac{67}{100}\right)^{11}+\left(\frac{33}{100}\right)^{2}\left(\frac{67}{100}\right)^{10}+\left(\frac{33}{100}\right)^{3}\left(\frac{67}{100}\right)^{9}+\left(\frac{33}{100}\right)^{4}\left(\frac{67}{100}\right)^{8}+\left(\frac{33}{100}\right)^{5}\left(\frac{67}{100}\right)^{7}+\left(\frac{33}{100}\right)^{6}\times 0.67^{6}+0.33^{7}\times 0.67^{5}+0.33^{8}\times 0.67^{4}\right)\)
- step23: Convert the expressions:
\(1-\left(1\times \left(\frac{67}{100}\right)^{12}+\frac{33}{100}\left(\frac{67}{100}\right)^{11}+\left(\frac{33}{100}\right)^{2}\left(\frac{67}{100}\right)^{10}+\left(\frac{33}{100}\right)^{3}\left(\frac{67}{100}\right)^{9}+\left(\frac{33}{100}\right)^{4}\left(\frac{67}{100}\right)^{8}+\left(\frac{33}{100}\right)^{5}\left(\frac{67}{100}\right)^{7}+\left(\frac{33}{100}\right)^{6}\left(\frac{67}{100}\right)^{6}+0.33^{7}\times 0.67^{5}+0.33^{8}\times 0.67^{4}\right)\)
- step24: Convert the expressions:
\(1-\left(1\times \left(\frac{67}{100}\right)^{12}+\frac{33}{100}\left(\frac{67}{100}\right)^{11}+\left(\frac{33}{100}\right)^{2}\left(\frac{67}{100}\right)^{10}+\left(\frac{33}{100}\right)^{3}\left(\frac{67}{100}\right)^{9}+\left(\frac{33}{100}\right)^{4}\left(\frac{67}{100}\right)^{8}+\left(\frac{33}{100}\right)^{5}\left(\frac{67}{100}\right)^{7}+\left(\frac{33}{100}\right)^{6}\left(\frac{67}{100}\right)^{6}+\left(\frac{33}{100}\right)^{7}\times 0.67^{5}+0.33^{8}\times 0.67^{4}\right)\)
- step25: Convert the expressions:
\(1-\left(1\times \left(\frac{67}{100}\right)^{12}+\frac{33}{100}\left(\frac{67}{100}\right)^{11}+\left(\frac{33}{100}\right)^{2}\left(\frac{67}{100}\right)^{10}+\left(\frac{33}{100}\right)^{3}\left(\frac{67}{100}\right)^{9}+\left(\frac{33}{100}\right)^{4}\left(\frac{67}{100}\right)^{8}+\left(\frac{33}{100}\right)^{5}\left(\frac{67}{100}\right)^{7}+\left(\frac{33}{100}\right)^{6}\left(\frac{67}{100}\right)^{6}+\left(\frac{33}{100}\right)^{7}\left(\frac{67}{100}\right)^{5}+0.33^{8}\times 0.67^{4}\right)\)
- step26: Convert the expressions:
\(1-\left(1\times \left(\frac{67}{100}\right)^{12}+\frac{33}{100}\left(\frac{67}{100}\right)^{11}+\left(\frac{33}{100}\right)^{2}\left(\frac{67}{100}\right)^{10}+\left(\frac{33}{100}\right)^{3}\left(\frac{67}{100}\right)^{9}+\left(\frac{33}{100}\right)^{4}\left(\frac{67}{100}\right)^{8}+\left(\frac{33}{100}\right)^{5}\left(\frac{67}{100}\right)^{7}+\left(\frac{33}{100}\right)^{6}\left(\frac{67}{100}\right)^{6}+\left(\frac{33}{100}\right)^{7}\left(\frac{67}{100}\right)^{5}+\left(\frac{33}{100}\right)^{8}\times 0.67^{4}\right)\)
- step27: Convert the expressions:
\(1-\left(1\times \left(\frac{67}{100}\right)^{12}+\frac{33}{100}\left(\frac{67}{100}\right)^{11}+\left(\frac{33}{100}\right)^{2}\left(\frac{67}{100}\right)^{10}+\left(\frac{33}{100}\right)^{3}\left(\frac{67}{100}\right)^{9}+\left(\frac{33}{100}\right)^{4}\left(\frac{67}{100}\right)^{8}+\left(\frac{33}{100}\right)^{5}\left(\frac{67}{100}\right)^{7}+\left(\frac{33}{100}\right)^{6}\left(\frac{67}{100}\right)^{6}+\left(\frac{33}{100}\right)^{7}\left(\frac{67}{100}\right)^{5}+\left(\frac{33}{100}\right)^{8}\left(\frac{67}{100}\right)^{4}\right)\)
- step28: Multiply:
\(1-\left(\left(\frac{67}{100}\right)^{12}+\frac{33}{100}\left(\frac{67}{100}\right)^{11}+\left(\frac{33}{100}\right)^{2}\left(\frac{67}{100}\right)^{10}+\left(\frac{33}{100}\right)^{3}\left(\frac{67}{100}\right)^{9}+\left(\frac{33}{100}\right)^{4}\left(\frac{67}{100}\right)^{8}+\left(\frac{33}{100}\right)^{5}\left(\frac{67}{100}\right)^{7}+\left(\frac{33}{100}\right)^{6}\left(\frac{67}{100}\right)^{6}+\left(\frac{33}{100}\right)^{7}\left(\frac{67}{100}\right)^{5}+\left(\frac{33}{100}\right)^{8}\left(\frac{67}{100}\right)^{4}\right)\)
- step29: Multiply the numbers:
\(1-\left(\left(\frac{67}{100}\right)^{12}+\frac{33\times 67^{11}}{100^{12}}+\left(\frac{33}{100}\right)^{2}\left(\frac{67}{100}\right)^{10}+\left(\frac{33}{100}\right)^{3}\left(\frac{67}{100}\right)^{9}+\left(\frac{33}{100}\right)^{4}\left(\frac{67}{100}\right)^{8}+\left(\frac{33}{100}\right)^{5}\left(\frac{67}{100}\right)^{7}+\left(\frac{33}{100}\right)^{6}\left(\frac{67}{100}\right)^{6}+\left(\frac{33}{100}\right)^{7}\left(\frac{67}{100}\right)^{5}+\left(\frac{33}{100}\right)^{8}\left(\frac{67}{100}\right)^{4}\right)\)
- step30: Multiply the numbers:
\(1-\left(\left(\frac{67}{100}\right)^{12}+\frac{33\times 67^{11}}{100^{12}}+\frac{33^{2}}{100^{2}}\times \frac{67^{10}}{100^{10}}+\left(\frac{33}{100}\right)^{3}\left(\frac{67}{100}\right)^{9}+\left(\frac{33}{100}\right)^{4}\left(\frac{67}{100}\right)^{8}+\left(\frac{33}{100}\right)^{5}\left(\frac{67}{100}\right)^{7}+\left(\frac{33}{100}\right)^{6}\left(\frac{67}{100}\right)^{6}+\left(\frac{33}{100}\right)^{7}\left(\frac{67}{100}\right)^{5}+\left(\frac{33}{100}\right)^{8}\left(\frac{67}{100}\right)^{4}\right)\)
- step31: Multiply the numbers:
\(1-\left(\left(\frac{67}{100}\right)^{12}+\frac{33\times 67^{11}}{100^{12}}+\frac{33^{2}}{100^{2}}\times \frac{67^{10}}{100^{10}}+\frac{33^{3}}{100^{3}}\times \frac{67^{9}}{100^{9}}+\left(\frac{33}{100}\right)^{4}\left(\frac{67}{100}\right)^{8}+\left(\frac{33}{100}\right)^{5}\left(\frac{67}{100}\right)^{7}+\left(\frac{33}{100}\right)^{6}\left(\frac{67}{100}\right)^{6}+\left(\frac{33}{100}\right)^{7}\left(\frac{67}{100}\right)^{5}+\left(\frac{33}{100}\right)^{8}\left(\frac{67}{100}\right)^{4}\right)\)
- step32: Multiply the numbers:
\(1-\left(\left(\frac{67}{100}\right)^{12}+\frac{33\times 67^{11}}{100^{12}}+\frac{33^{2}}{100^{2}}\times \frac{67^{10}}{100^{10}}+\frac{33^{3}}{100^{3}}\times \frac{67^{9}}{100^{9}}+\frac{33^{4}}{100^{4}}\times \frac{67^{8}}{100^{8}}+\left(\frac{33}{100}\right)^{5}\left(\frac{67}{100}\right)^{7}+\left(\frac{33}{100}\right)^{6}\left(\frac{67}{100}\right)^{6}+\left(\frac{33}{100}\right)^{7}\left(\frac{67}{100}\right)^{5}+\left(\frac{33}{100}\right)^{8}\left(\frac{67}{100}\right)^{4}\right)\)
- step33: Multiply the numbers:
\(1-\left(\left(\frac{67}{100}\right)^{12}+\frac{33\times 67^{11}}{100^{12}}+\frac{33^{2}}{100^{2}}\times \frac{67^{10}}{100^{10}}+\frac{33^{3}}{100^{3}}\times \frac{67^{9}}{100^{9}}+\frac{33^{4}}{100^{4}}\times \frac{67^{8}}{100^{8}}+\frac{33^{5}}{100^{5}}\times \frac{67^{7}}{100^{7}}+\left(\frac{33}{100}\right)^{6}\left(\frac{67}{100}\right)^{6}+\left(\frac{33}{100}\right)^{7}\left(\frac{67}{100}\right)^{5}+\left(\frac{33}{100}\right)^{8}\left(\frac{67}{100}\right)^{4}\right)\)
- step34: Multiply the numbers:
\(1-\left(\left(\frac{67}{100}\right)^{12}+\frac{33\times 67^{11}}{100^{12}}+\frac{33^{2}}{100^{2}}\times \frac{67^{10}}{100^{10}}+\frac{33^{3}}{100^{3}}\times \frac{67^{9}}{100^{9}}+\frac{33^{4}}{100^{4}}\times \frac{67^{8}}{100^{8}}+\frac{33^{5}}{100^{5}}\times \frac{67^{7}}{100^{7}}+\frac{2211^{6}}{10000^{6}}+\left(\frac{33}{100}\right)^{7}\left(\frac{67}{100}\right)^{5}+\left(\frac{33}{100}\right)^{8}\left(\frac{67}{100}\right)^{4}\right)\)
- step35: Multiply the numbers:
\(1-\left(\left(\frac{67}{100}\right)^{12}+\frac{33\times 67^{11}}{100^{12}}+\frac{33^{2}}{100^{2}}\times \frac{67^{10}}{100^{10}}+\frac{33^{3}}{100^{3}}\times \frac{67^{9}}{100^{9}}+\frac{33^{4}}{100^{4}}\times \frac{67^{8}}{100^{8}}+\frac{33^{5}}{100^{5}}\times \frac{67^{7}}{100^{7}}+\frac{2211^{6}}{10000^{6}}+\frac{33^{7}}{100^{7}}\times \frac{67^{5}}{100^{5}}+\left(\frac{33}{100}\right)^{8}\left(\frac{67}{100}\right)^{4}\right)\)
- step36: Multiply the numbers:
\(1-\left(\left(\frac{67}{100}\right)^{12}+\frac{33\times 67^{11}}{100^{12}}+\frac{33^{2}}{100^{2}}\times \frac{67^{10}}{100^{10}}+\frac{33^{3}}{100^{3}}\times \frac{67^{9}}{100^{9}}+\frac{33^{4}}{100^{4}}\times \frac{67^{8}}{100^{8}}+\frac{33^{5}}{100^{5}}\times \frac{67^{7}}{100^{7}}+\frac{2211^{6}}{10000^{6}}+\frac{33^{7}}{100^{7}}\times \frac{67^{5}}{100^{5}}+\frac{33^{8}}{100^{8}}\times \frac{67^{4}}{100^{4}}\right)\)
- step37: Add the numbers:
\(1-\frac{557800\times 67^{9}+484837\times 33^{4}\times 67^{5}+2211^{6}+33^{8}\times 67^{4}}{100^{12}}\)
- step38: Reduce fractions to a common denominator:
\(\frac{100^{12}}{100^{12}}-\frac{557800\times 67^{9}+484837\times 33^{4}\times 67^{5}+2211^{6}+33^{8}\times 67^{4}}{100^{12}}\)
- step39: Transform the expression:
\(\frac{100^{12}-\left(557800\times 67^{9}+484837\times 33^{4}\times 67^{5}+2211^{6}+33^{8}\times 67^{4}\right)}{100^{12}}\)
- step40: Remove the parentheses:
\(\frac{100^{12}-557800\times 67^{9}-484837\times 33^{4}\times 67^{5}-2211^{6}-33^{8}\times 67^{4}}{100^{12}}\)
The probability of getting 9 or more voters who would do internet voting out of 12 selected voters is approximately 0.9839.
Since the probability is not low, we can conclude that 9 is significantly high.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución