Pregunta
upstudy study bank question image url

15. 5.2 HW Part 2 of \( 3.2 .27-T \) Based on a survey, \( 33 \% \) of likely voters would be willing to vote by internet instead of the in-person traditional method of voting. For each of the following, assume that 12 likely voters are randomly selected. Complete parts (a) through (c) below. b. If 9 of the selected voters would do internet voting, is 9 significantly high? Why or why not? 20.67 of 22 points Select the correct choice below and fill in the answer box within your choice. (Round to five decimal places as needed.) A. Yes, because the probability of 9 or more is \( \square \), which is not low. B. No, because the probability of 9 or more is \( \square \), which is not low. C. No, because the probability of 9 or more is \( \square \), which is low. D. Yes, because the probability of 9 or more is \( \square \), which is low.

Ask by Mejia Bright. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The probability of getting 9 or more voters who would do internet voting out of 12 selected voters is approximately 0.9839. Since this probability is not low, 9 is significantly high. Therefore, the correct choice is: A. Yes, because the probability of 9 or more is **0.9839**, which is not low.

Solución

To determine if 9 is significantly high, we need to calculate the probability of getting 9 or more voters who would do internet voting out of 12 selected voters. Given that 33% of likely voters would be willing to vote by internet, we can calculate the probability of getting 9 or more voters who would do internet voting using the binomial distribution formula. The probability of getting exactly \( k \) successes in \( n \) trials, where the probability of success in each trial is \( p \), is given by the binomial distribution formula: \[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \] In this case, \( n = 12 \), \( k = 9 \), and \( p = 0.33 \). Let's calculate the probability of getting 9 or more voters who would do internet voting: \[ P(X \geq 9) = 1 - P(X < 9) \] \[ P(X < 9) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8) \] We will calculate each of these probabilities using the binomial distribution formula and then sum them up to find the probability of getting 9 or more voters who would do internet voting. Let's calculate the probabilities: Calculate the value by following steps: - step0: Calculate: \(1-\left(0.33^{0}\left(1-0.33\right)^{12}+0.33^{1}\left(1-0.33\right)^{11}+0.33^{2}\left(1-0.33\right)^{10}+0.33^{3}\left(1-0.33\right)^{9}+0.33^{4}\left(1-0.33\right)^{8}+0.33^{5}\left(1-0.33\right)^{7}+0.33^{6}\left(1-0.33\right)^{6}+0.33^{7}\left(1-0.33\right)^{5}+0.33^{8}\left(1-0.33\right)^{4}\right)\) - step1: Evaluate the power: \(1-\left(1\times \left(1-0.33\right)^{12}+0.33^{1}\left(1-0.33\right)^{11}+0.33^{2}\left(1-0.33\right)^{10}+0.33^{3}\left(1-0.33\right)^{9}+0.33^{4}\left(1-0.33\right)^{8}+0.33^{5}\left(1-0.33\right)^{7}+0.33^{6}\left(1-0.33\right)^{6}+0.33^{7}\left(1-0.33\right)^{5}+0.33^{8}\left(1-0.33\right)^{4}\right)\) - step2: Subtract the numbers: \(1-\left(1\times 0.67^{12}+0.33^{1}\left(1-0.33\right)^{11}+0.33^{2}\left(1-0.33\right)^{10}+0.33^{3}\left(1-0.33\right)^{9}+0.33^{4}\left(1-0.33\right)^{8}+0.33^{5}\left(1-0.33\right)^{7}+0.33^{6}\left(1-0.33\right)^{6}+0.33^{7}\left(1-0.33\right)^{5}+0.33^{8}\left(1-0.33\right)^{4}\right)\) - step3: Subtract the numbers: \(1-\left(1\times 0.67^{12}+0.33^{1}\times 0.67^{11}+0.33^{2}\left(1-0.33\right)^{10}+0.33^{3}\left(1-0.33\right)^{9}+0.33^{4}\left(1-0.33\right)^{8}+0.33^{5}\left(1-0.33\right)^{7}+0.33^{6}\left(1-0.33\right)^{6}+0.33^{7}\left(1-0.33\right)^{5}+0.33^{8}\left(1-0.33\right)^{4}\right)\) - step4: Subtract the numbers: \(1-\left(1\times 0.67^{12}+0.33^{1}\times 0.67^{11}+0.33^{2}\times 0.67^{10}+0.33^{3}\left(1-0.33\right)^{9}+0.33^{4}\left(1-0.33\right)^{8}+0.33^{5}\left(1-0.33\right)^{7}+0.33^{6}\left(1-0.33\right)^{6}+0.33^{7}\left(1-0.33\right)^{5}+0.33^{8}\left(1-0.33\right)^{4}\right)\) - step5: Subtract the numbers: \(1-\left(1\times 0.67^{12}+0.33^{1}\times 0.67^{11}+0.33^{2}\times 0.67^{10}+0.33^{3}\times 0.67^{9}+0.33^{4}\left(1-0.33\right)^{8}+0.33^{5}\left(1-0.33\right)^{7}+0.33^{6}\left(1-0.33\right)^{6}+0.33^{7}\left(1-0.33\right)^{5}+0.33^{8}\left(1-0.33\right)^{4}\right)\) - step6: Subtract the numbers: \(1-\left(1\times 0.67^{12}+0.33^{1}\times 0.67^{11}+0.33^{2}\times 0.67^{10}+0.33^{3}\times 0.67^{9}+0.33^{4}\times 0.67^{8}+0.33^{5}\left(1-0.33\right)^{7}+0.33^{6}\left(1-0.33\right)^{6}+0.33^{7}\left(1-0.33\right)^{5}+0.33^{8}\left(1-0.33\right)^{4}\right)\) - step7: Subtract the numbers: \(1-\left(1\times 0.67^{12}+0.33^{1}\times 0.67^{11}+0.33^{2}\times 0.67^{10}+0.33^{3}\times 0.67^{9}+0.33^{4}\times 0.67^{8}+0.33^{5}\times 0.67^{7}+0.33^{6}\left(1-0.33\right)^{6}+0.33^{7}\left(1-0.33\right)^{5}+0.33^{8}\left(1-0.33\right)^{4}\right)\) - step8: Subtract the numbers: \(1-\left(1\times 0.67^{12}+0.33^{1}\times 0.67^{11}+0.33^{2}\times 0.67^{10}+0.33^{3}\times 0.67^{9}+0.33^{4}\times 0.67^{8}+0.33^{5}\times 0.67^{7}+0.33^{6}\times 0.67^{6}+0.33^{7}\left(1-0.33\right)^{5}+0.33^{8}\left(1-0.33\right)^{4}\right)\) - step9: Subtract the numbers: \(1-\left(1\times 0.67^{12}+0.33^{1}\times 0.67^{11}+0.33^{2}\times 0.67^{10}+0.33^{3}\times 0.67^{9}+0.33^{4}\times 0.67^{8}+0.33^{5}\times 0.67^{7}+0.33^{6}\times 0.67^{6}+0.33^{7}\times 0.67^{5}+0.33^{8}\left(1-0.33\right)^{4}\right)\) - step10: Subtract the numbers: \(1-\left(1\times 0.67^{12}+0.33^{1}\times 0.67^{11}+0.33^{2}\times 0.67^{10}+0.33^{3}\times 0.67^{9}+0.33^{4}\times 0.67^{8}+0.33^{5}\times 0.67^{7}+0.33^{6}\times 0.67^{6}+0.33^{7}\times 0.67^{5}+0.33^{8}\times 0.67^{4}\right)\) - step11: Convert the expressions: \(1-\left(1\times \left(\frac{67}{100}\right)^{12}+0.33^{1}\times 0.67^{11}+0.33^{2}\times 0.67^{10}+0.33^{3}\times 0.67^{9}+0.33^{4}\times 0.67^{8}+0.33^{5}\times 0.67^{7}+0.33^{6}\times 0.67^{6}+0.33^{7}\times 0.67^{5}+0.33^{8}\times 0.67^{4}\right)\) - step12: Calculate: \(1-\left(1\times \left(\frac{67}{100}\right)^{12}+\frac{33}{100}\times 0.67^{11}+0.33^{2}\times 0.67^{10}+0.33^{3}\times 0.67^{9}+0.33^{4}\times 0.67^{8}+0.33^{5}\times 0.67^{7}+0.33^{6}\times 0.67^{6}+0.33^{7}\times 0.67^{5}+0.33^{8}\times 0.67^{4}\right)\) - step13: Convert the expressions: \(1-\left(1\times \left(\frac{67}{100}\right)^{12}+\frac{33}{100}\left(\frac{67}{100}\right)^{11}+0.33^{2}\times 0.67^{10}+0.33^{3}\times 0.67^{9}+0.33^{4}\times 0.67^{8}+0.33^{5}\times 0.67^{7}+0.33^{6}\times 0.67^{6}+0.33^{7}\times 0.67^{5}+0.33^{8}\times 0.67^{4}\right)\) - step14: Convert the expressions: \(1-\left(1\times \left(\frac{67}{100}\right)^{12}+\frac{33}{100}\left(\frac{67}{100}\right)^{11}+\left(\frac{33}{100}\right)^{2}\times 0.67^{10}+0.33^{3}\times 0.67^{9}+0.33^{4}\times 0.67^{8}+0.33^{5}\times 0.67^{7}+0.33^{6}\times 0.67^{6}+0.33^{7}\times 0.67^{5}+0.33^{8}\times 0.67^{4}\right)\) - step15: Convert the expressions: \(1-\left(1\times \left(\frac{67}{100}\right)^{12}+\frac{33}{100}\left(\frac{67}{100}\right)^{11}+\left(\frac{33}{100}\right)^{2}\left(\frac{67}{100}\right)^{10}+0.33^{3}\times 0.67^{9}+0.33^{4}\times 0.67^{8}+0.33^{5}\times 0.67^{7}+0.33^{6}\times 0.67^{6}+0.33^{7}\times 0.67^{5}+0.33^{8}\times 0.67^{4}\right)\) - step16: Convert the expressions: \(1-\left(1\times \left(\frac{67}{100}\right)^{12}+\frac{33}{100}\left(\frac{67}{100}\right)^{11}+\left(\frac{33}{100}\right)^{2}\left(\frac{67}{100}\right)^{10}+\left(\frac{33}{100}\right)^{3}\times 0.67^{9}+0.33^{4}\times 0.67^{8}+0.33^{5}\times 0.67^{7}+0.33^{6}\times 0.67^{6}+0.33^{7}\times 0.67^{5}+0.33^{8}\times 0.67^{4}\right)\) - step17: Convert the expressions: \(1-\left(1\times \left(\frac{67}{100}\right)^{12}+\frac{33}{100}\left(\frac{67}{100}\right)^{11}+\left(\frac{33}{100}\right)^{2}\left(\frac{67}{100}\right)^{10}+\left(\frac{33}{100}\right)^{3}\left(\frac{67}{100}\right)^{9}+0.33^{4}\times 0.67^{8}+0.33^{5}\times 0.67^{7}+0.33^{6}\times 0.67^{6}+0.33^{7}\times 0.67^{5}+0.33^{8}\times 0.67^{4}\right)\) - step18: Convert the expressions: \(1-\left(1\times \left(\frac{67}{100}\right)^{12}+\frac{33}{100}\left(\frac{67}{100}\right)^{11}+\left(\frac{33}{100}\right)^{2}\left(\frac{67}{100}\right)^{10}+\left(\frac{33}{100}\right)^{3}\left(\frac{67}{100}\right)^{9}+\left(\frac{33}{100}\right)^{4}\times 0.67^{8}+0.33^{5}\times 0.67^{7}+0.33^{6}\times 0.67^{6}+0.33^{7}\times 0.67^{5}+0.33^{8}\times 0.67^{4}\right)\) - step19: Convert the expressions: \(1-\left(1\times \left(\frac{67}{100}\right)^{12}+\frac{33}{100}\left(\frac{67}{100}\right)^{11}+\left(\frac{33}{100}\right)^{2}\left(\frac{67}{100}\right)^{10}+\left(\frac{33}{100}\right)^{3}\left(\frac{67}{100}\right)^{9}+\left(\frac{33}{100}\right)^{4}\left(\frac{67}{100}\right)^{8}+0.33^{5}\times 0.67^{7}+0.33^{6}\times 0.67^{6}+0.33^{7}\times 0.67^{5}+0.33^{8}\times 0.67^{4}\right)\) - step20: Convert the expressions: \(1-\left(1\times \left(\frac{67}{100}\right)^{12}+\frac{33}{100}\left(\frac{67}{100}\right)^{11}+\left(\frac{33}{100}\right)^{2}\left(\frac{67}{100}\right)^{10}+\left(\frac{33}{100}\right)^{3}\left(\frac{67}{100}\right)^{9}+\left(\frac{33}{100}\right)^{4}\left(\frac{67}{100}\right)^{8}+\left(\frac{33}{100}\right)^{5}\times 0.67^{7}+0.33^{6}\times 0.67^{6}+0.33^{7}\times 0.67^{5}+0.33^{8}\times 0.67^{4}\right)\) - step21: Convert the expressions: \(1-\left(1\times \left(\frac{67}{100}\right)^{12}+\frac{33}{100}\left(\frac{67}{100}\right)^{11}+\left(\frac{33}{100}\right)^{2}\left(\frac{67}{100}\right)^{10}+\left(\frac{33}{100}\right)^{3}\left(\frac{67}{100}\right)^{9}+\left(\frac{33}{100}\right)^{4}\left(\frac{67}{100}\right)^{8}+\left(\frac{33}{100}\right)^{5}\left(\frac{67}{100}\right)^{7}+0.33^{6}\times 0.67^{6}+0.33^{7}\times 0.67^{5}+0.33^{8}\times 0.67^{4}\right)\) - step22: Convert the expressions: \(1-\left(1\times \left(\frac{67}{100}\right)^{12}+\frac{33}{100}\left(\frac{67}{100}\right)^{11}+\left(\frac{33}{100}\right)^{2}\left(\frac{67}{100}\right)^{10}+\left(\frac{33}{100}\right)^{3}\left(\frac{67}{100}\right)^{9}+\left(\frac{33}{100}\right)^{4}\left(\frac{67}{100}\right)^{8}+\left(\frac{33}{100}\right)^{5}\left(\frac{67}{100}\right)^{7}+\left(\frac{33}{100}\right)^{6}\times 0.67^{6}+0.33^{7}\times 0.67^{5}+0.33^{8}\times 0.67^{4}\right)\) - step23: Convert the expressions: \(1-\left(1\times \left(\frac{67}{100}\right)^{12}+\frac{33}{100}\left(\frac{67}{100}\right)^{11}+\left(\frac{33}{100}\right)^{2}\left(\frac{67}{100}\right)^{10}+\left(\frac{33}{100}\right)^{3}\left(\frac{67}{100}\right)^{9}+\left(\frac{33}{100}\right)^{4}\left(\frac{67}{100}\right)^{8}+\left(\frac{33}{100}\right)^{5}\left(\frac{67}{100}\right)^{7}+\left(\frac{33}{100}\right)^{6}\left(\frac{67}{100}\right)^{6}+0.33^{7}\times 0.67^{5}+0.33^{8}\times 0.67^{4}\right)\) - step24: Convert the expressions: \(1-\left(1\times \left(\frac{67}{100}\right)^{12}+\frac{33}{100}\left(\frac{67}{100}\right)^{11}+\left(\frac{33}{100}\right)^{2}\left(\frac{67}{100}\right)^{10}+\left(\frac{33}{100}\right)^{3}\left(\frac{67}{100}\right)^{9}+\left(\frac{33}{100}\right)^{4}\left(\frac{67}{100}\right)^{8}+\left(\frac{33}{100}\right)^{5}\left(\frac{67}{100}\right)^{7}+\left(\frac{33}{100}\right)^{6}\left(\frac{67}{100}\right)^{6}+\left(\frac{33}{100}\right)^{7}\times 0.67^{5}+0.33^{8}\times 0.67^{4}\right)\) - step25: Convert the expressions: \(1-\left(1\times \left(\frac{67}{100}\right)^{12}+\frac{33}{100}\left(\frac{67}{100}\right)^{11}+\left(\frac{33}{100}\right)^{2}\left(\frac{67}{100}\right)^{10}+\left(\frac{33}{100}\right)^{3}\left(\frac{67}{100}\right)^{9}+\left(\frac{33}{100}\right)^{4}\left(\frac{67}{100}\right)^{8}+\left(\frac{33}{100}\right)^{5}\left(\frac{67}{100}\right)^{7}+\left(\frac{33}{100}\right)^{6}\left(\frac{67}{100}\right)^{6}+\left(\frac{33}{100}\right)^{7}\left(\frac{67}{100}\right)^{5}+0.33^{8}\times 0.67^{4}\right)\) - step26: Convert the expressions: \(1-\left(1\times \left(\frac{67}{100}\right)^{12}+\frac{33}{100}\left(\frac{67}{100}\right)^{11}+\left(\frac{33}{100}\right)^{2}\left(\frac{67}{100}\right)^{10}+\left(\frac{33}{100}\right)^{3}\left(\frac{67}{100}\right)^{9}+\left(\frac{33}{100}\right)^{4}\left(\frac{67}{100}\right)^{8}+\left(\frac{33}{100}\right)^{5}\left(\frac{67}{100}\right)^{7}+\left(\frac{33}{100}\right)^{6}\left(\frac{67}{100}\right)^{6}+\left(\frac{33}{100}\right)^{7}\left(\frac{67}{100}\right)^{5}+\left(\frac{33}{100}\right)^{8}\times 0.67^{4}\right)\) - step27: Convert the expressions: \(1-\left(1\times \left(\frac{67}{100}\right)^{12}+\frac{33}{100}\left(\frac{67}{100}\right)^{11}+\left(\frac{33}{100}\right)^{2}\left(\frac{67}{100}\right)^{10}+\left(\frac{33}{100}\right)^{3}\left(\frac{67}{100}\right)^{9}+\left(\frac{33}{100}\right)^{4}\left(\frac{67}{100}\right)^{8}+\left(\frac{33}{100}\right)^{5}\left(\frac{67}{100}\right)^{7}+\left(\frac{33}{100}\right)^{6}\left(\frac{67}{100}\right)^{6}+\left(\frac{33}{100}\right)^{7}\left(\frac{67}{100}\right)^{5}+\left(\frac{33}{100}\right)^{8}\left(\frac{67}{100}\right)^{4}\right)\) - step28: Multiply: \(1-\left(\left(\frac{67}{100}\right)^{12}+\frac{33}{100}\left(\frac{67}{100}\right)^{11}+\left(\frac{33}{100}\right)^{2}\left(\frac{67}{100}\right)^{10}+\left(\frac{33}{100}\right)^{3}\left(\frac{67}{100}\right)^{9}+\left(\frac{33}{100}\right)^{4}\left(\frac{67}{100}\right)^{8}+\left(\frac{33}{100}\right)^{5}\left(\frac{67}{100}\right)^{7}+\left(\frac{33}{100}\right)^{6}\left(\frac{67}{100}\right)^{6}+\left(\frac{33}{100}\right)^{7}\left(\frac{67}{100}\right)^{5}+\left(\frac{33}{100}\right)^{8}\left(\frac{67}{100}\right)^{4}\right)\) - step29: Multiply the numbers: \(1-\left(\left(\frac{67}{100}\right)^{12}+\frac{33\times 67^{11}}{100^{12}}+\left(\frac{33}{100}\right)^{2}\left(\frac{67}{100}\right)^{10}+\left(\frac{33}{100}\right)^{3}\left(\frac{67}{100}\right)^{9}+\left(\frac{33}{100}\right)^{4}\left(\frac{67}{100}\right)^{8}+\left(\frac{33}{100}\right)^{5}\left(\frac{67}{100}\right)^{7}+\left(\frac{33}{100}\right)^{6}\left(\frac{67}{100}\right)^{6}+\left(\frac{33}{100}\right)^{7}\left(\frac{67}{100}\right)^{5}+\left(\frac{33}{100}\right)^{8}\left(\frac{67}{100}\right)^{4}\right)\) - step30: Multiply the numbers: \(1-\left(\left(\frac{67}{100}\right)^{12}+\frac{33\times 67^{11}}{100^{12}}+\frac{33^{2}}{100^{2}}\times \frac{67^{10}}{100^{10}}+\left(\frac{33}{100}\right)^{3}\left(\frac{67}{100}\right)^{9}+\left(\frac{33}{100}\right)^{4}\left(\frac{67}{100}\right)^{8}+\left(\frac{33}{100}\right)^{5}\left(\frac{67}{100}\right)^{7}+\left(\frac{33}{100}\right)^{6}\left(\frac{67}{100}\right)^{6}+\left(\frac{33}{100}\right)^{7}\left(\frac{67}{100}\right)^{5}+\left(\frac{33}{100}\right)^{8}\left(\frac{67}{100}\right)^{4}\right)\) - step31: Multiply the numbers: \(1-\left(\left(\frac{67}{100}\right)^{12}+\frac{33\times 67^{11}}{100^{12}}+\frac{33^{2}}{100^{2}}\times \frac{67^{10}}{100^{10}}+\frac{33^{3}}{100^{3}}\times \frac{67^{9}}{100^{9}}+\left(\frac{33}{100}\right)^{4}\left(\frac{67}{100}\right)^{8}+\left(\frac{33}{100}\right)^{5}\left(\frac{67}{100}\right)^{7}+\left(\frac{33}{100}\right)^{6}\left(\frac{67}{100}\right)^{6}+\left(\frac{33}{100}\right)^{7}\left(\frac{67}{100}\right)^{5}+\left(\frac{33}{100}\right)^{8}\left(\frac{67}{100}\right)^{4}\right)\) - step32: Multiply the numbers: \(1-\left(\left(\frac{67}{100}\right)^{12}+\frac{33\times 67^{11}}{100^{12}}+\frac{33^{2}}{100^{2}}\times \frac{67^{10}}{100^{10}}+\frac{33^{3}}{100^{3}}\times \frac{67^{9}}{100^{9}}+\frac{33^{4}}{100^{4}}\times \frac{67^{8}}{100^{8}}+\left(\frac{33}{100}\right)^{5}\left(\frac{67}{100}\right)^{7}+\left(\frac{33}{100}\right)^{6}\left(\frac{67}{100}\right)^{6}+\left(\frac{33}{100}\right)^{7}\left(\frac{67}{100}\right)^{5}+\left(\frac{33}{100}\right)^{8}\left(\frac{67}{100}\right)^{4}\right)\) - step33: Multiply the numbers: \(1-\left(\left(\frac{67}{100}\right)^{12}+\frac{33\times 67^{11}}{100^{12}}+\frac{33^{2}}{100^{2}}\times \frac{67^{10}}{100^{10}}+\frac{33^{3}}{100^{3}}\times \frac{67^{9}}{100^{9}}+\frac{33^{4}}{100^{4}}\times \frac{67^{8}}{100^{8}}+\frac{33^{5}}{100^{5}}\times \frac{67^{7}}{100^{7}}+\left(\frac{33}{100}\right)^{6}\left(\frac{67}{100}\right)^{6}+\left(\frac{33}{100}\right)^{7}\left(\frac{67}{100}\right)^{5}+\left(\frac{33}{100}\right)^{8}\left(\frac{67}{100}\right)^{4}\right)\) - step34: Multiply the numbers: \(1-\left(\left(\frac{67}{100}\right)^{12}+\frac{33\times 67^{11}}{100^{12}}+\frac{33^{2}}{100^{2}}\times \frac{67^{10}}{100^{10}}+\frac{33^{3}}{100^{3}}\times \frac{67^{9}}{100^{9}}+\frac{33^{4}}{100^{4}}\times \frac{67^{8}}{100^{8}}+\frac{33^{5}}{100^{5}}\times \frac{67^{7}}{100^{7}}+\frac{2211^{6}}{10000^{6}}+\left(\frac{33}{100}\right)^{7}\left(\frac{67}{100}\right)^{5}+\left(\frac{33}{100}\right)^{8}\left(\frac{67}{100}\right)^{4}\right)\) - step35: Multiply the numbers: \(1-\left(\left(\frac{67}{100}\right)^{12}+\frac{33\times 67^{11}}{100^{12}}+\frac{33^{2}}{100^{2}}\times \frac{67^{10}}{100^{10}}+\frac{33^{3}}{100^{3}}\times \frac{67^{9}}{100^{9}}+\frac{33^{4}}{100^{4}}\times \frac{67^{8}}{100^{8}}+\frac{33^{5}}{100^{5}}\times \frac{67^{7}}{100^{7}}+\frac{2211^{6}}{10000^{6}}+\frac{33^{7}}{100^{7}}\times \frac{67^{5}}{100^{5}}+\left(\frac{33}{100}\right)^{8}\left(\frac{67}{100}\right)^{4}\right)\) - step36: Multiply the numbers: \(1-\left(\left(\frac{67}{100}\right)^{12}+\frac{33\times 67^{11}}{100^{12}}+\frac{33^{2}}{100^{2}}\times \frac{67^{10}}{100^{10}}+\frac{33^{3}}{100^{3}}\times \frac{67^{9}}{100^{9}}+\frac{33^{4}}{100^{4}}\times \frac{67^{8}}{100^{8}}+\frac{33^{5}}{100^{5}}\times \frac{67^{7}}{100^{7}}+\frac{2211^{6}}{10000^{6}}+\frac{33^{7}}{100^{7}}\times \frac{67^{5}}{100^{5}}+\frac{33^{8}}{100^{8}}\times \frac{67^{4}}{100^{4}}\right)\) - step37: Add the numbers: \(1-\frac{557800\times 67^{9}+484837\times 33^{4}\times 67^{5}+2211^{6}+33^{8}\times 67^{4}}{100^{12}}\) - step38: Reduce fractions to a common denominator: \(\frac{100^{12}}{100^{12}}-\frac{557800\times 67^{9}+484837\times 33^{4}\times 67^{5}+2211^{6}+33^{8}\times 67^{4}}{100^{12}}\) - step39: Transform the expression: \(\frac{100^{12}-\left(557800\times 67^{9}+484837\times 33^{4}\times 67^{5}+2211^{6}+33^{8}\times 67^{4}\right)}{100^{12}}\) - step40: Remove the parentheses: \(\frac{100^{12}-557800\times 67^{9}-484837\times 33^{4}\times 67^{5}-2211^{6}-33^{8}\times 67^{4}}{100^{12}}\) The probability of getting 9 or more voters who would do internet voting out of 12 selected voters is approximately 0.9839. Since the probability is not low, we can conclude that 9 is significantly high.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine if 9 is significantly high, we can use the binomial distribution where \( n = 12 \) and \( p = 0.33 \). The probability of getting exactly \( k \) successes (in this case, internet voters) can be found using the formula for the binomial probability. If we calculate this and find the cumulative probability of getting 9 or more, we can better decide if it's significantly high. Now, let’s consider how history has shaped voting methods. In the past, the introduction of mail-in ballots marked a significant shift towards accessibility in voting. Voter turnout increased as people found it easier to participate without having to travel. Similarly, internet voting could revolutionize the process further, potentially increasing overall engagement. For real-world applications, this scenario touches on modern electoral practices. Countries like Estonia have successfully implemented online voting, leading to increased voter turnout and engagement among younger demographics. Understanding these trends is vital for policymakers as they shape the future of electoral participation.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad