\( \begin{array}{ll}\text { (a) } \frac{8^{x+1} \cdot 2^{2 x-1}}{32^{x}} & \text { (b) } \frac{3^{n} \cdot 27^{n+1}}{9^{2 n+3}}\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
For part (a), you can simplify \( \frac{8^{x+1} \cdot 2^{2x-1}}{32^{x}} \) by rewriting the bases in terms of 2: \( 8 = 2^3 \) and \( 32 = 2^5 \). So, this becomes: \[ \frac{(2^3)^{x+1} \cdot 2^{2x-1}}{(2^5)^{x}} = \frac{2^{3x+3} \cdot 2^{2x-1}}{2^{5x}} = \frac{2^{3x+3 + 2x - 1}}{2^{5x}} = \frac{2^{5x + 2}}{2^{5x}} = 2^{2} \] Which simplifies to \( 4 \). For part (b), let's break down \( \frac{3^{n} \cdot 27^{n+1}}{9^{2n+3}} \) using \( 27 = 3^3 \) and \( 9 = 3^2 \): \[ \frac{3^{n} \cdot (3^3)^{n+1}}{(3^2)^{2n+3}} = \frac{3^{n} \cdot 3^{3n + 3}}{3^{4n + 6}} = \frac{3^{n + 3n + 3}}{3^{4n + 6}} = \frac{3^{4n + 3}}{3^{4n + 6}} = 3^{-3} \] Which simplifies to \( \frac{1}{27} \). Enjoy the magic of exponents!
