Pregunta
upstudy study bank question image url

Question
The function has at least one integer root.
Use the integer root theorem to find that root, then proceed to find all
complex roots. (Note: roots may be integer, rational, irrational, and/or
complex.)
Answer Attempt 3 out of 10
There are three roots :

Ask by Bradley Peters. in the United States
Mar 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function has roots at , , and .

Solución

  1. List the possible integer roots:
    By the Integer Root Theorem, any integer root of
    must be a divisor of the constant term . Thus, the possible candidates are
  2. Test the candidate :
    Substitute into :
    So, is a root.
  3. Factor the polynomial:
    Since is a root, factor out from .
    Use synthetic division with the coefficients :
    • Bring down .
    • Multiply by : and add to to get .
    • Multiply by : and add to to get .
    • Multiply by : and add to to get .
    The quotient polynomial is
    Thus,
  4. Factor the quadratic polynomial:
    Factor by splitting the middle term. Find two numbers that multiply to and add to . These numbers are and .
    Rewrite the quadratic:
    and factor by grouping:
  5. Determine all roots:
    The complete factorization of the polynomial is:
    Setting each factor equal to zero:
    • gives (integer root).
    • gives .
    • gives .
  6. Final answer:
    The function has three roots:

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find integer roots, we can use the Rational Root Theorem, which suggests that any rational solution must be a factor of the constant term divided by a factor of the leading coefficient. For the polynomial , the constant term is 2, and the leading coefficient is 3. The possible integer roots can be . Testing gives us , so is indeed a root!
Now, we can use polynomial long division or synthetic division to factor by . This leads us to . We can now find the remaining roots by setting . Using the quadratic formula:
Thus, we get two roots: and . The complete list of roots is .
These roots not only tell us the intersections along the x-axis, but they also serve as stepping stones in higher math. Understanding polynomial roots is foundational for fields such as algebra, calculus, and even engineering! Roots can be used in signal processing, optimization problems, and even economic modeling to analyze trends and forecast behaviors in data.
If you ever feel overwhelmed with finding roots, just remember to check small integers first and keep your calm! Mark common mistakes, such as neglecting to factor correctly or overlooking updates in signs during calculations. With patience and attention to detail, you will reach the solution like a math wizard!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad