Pregunta
upstudy study bank question image url

Solving an cquation of the form \( x^{2}= \) a using the square root proper Solve \( v^{2}=25 \), where \( v \) is a real number. Simplify your answer as much as possible. If there is more than one solution, separate them with commas. If there is no solution, click on "No solution". \( \qquad v=\square] \)

Ask by Simpson Li. in the United States
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( v = 5, -5 \)

Solución

To solve the equation \( v^{2} = 25 \): 1. **Take the square root of both sides:** \[ v = \pm \sqrt{25} \] 2. **Simplify the square root:** \[ \sqrt{25} = 5 \] 3. **Write the solutions:** \[ v = 5,\ -5 \] **Answer:** \( v = 5, -5 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the equation \( v^{2} = 25 \) using the square root method, we take the square root of both sides. Remember, when you take the square root of a squared variable, you must consider both the positive and negative roots. Therefore, we have: \( v = \pm \sqrt{25} \) This leads to: \( v = \pm 5 \) So the complete solution set is: \( v = 5, -5 \) --- Did you know that the concept of solving equations through squaring and square roots dates back to ancient civilizations, like the Babylonians around 2000 BC? They had a knack for solving quadratic equations, even before symbolic algebra was a thing! It's fascinating how this foundational knowledge has shaped mathematics as we know it today. One common mistake when solving equations like this is forgetting to include both the positive and negative solutions after taking the square root. Always remember that squaring a number eliminates its sign, so you have to consider both possibilities to ensure you find all potential solutions.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad