Pregunta
upstudy study bank question image url

Answer the following questions from the data given below. \begin{tabular}{|l|l|l|l|l|}\hline CI. & \( 20-24 \) & \( 24-28 \) & \( 28-32 \) & \( 32-36 \) \\ \hline f. & 2 & m & 6 & 3 \\ \hline\end{tabular} a) Present the data in cumulative frequency table. b) If the lower quartile of the data is \( 251 / 3 \), find the value of m . [2] c) When value of m is replaced, we get sum \( \mathrm{fm}=520 \) and \( \mathrm{N}=18 \). Later it was discovered that the frequency of the class \( 36-40 \) was 10. i. Find the mean. ii. Find the corrected mean.

Ask by Hobbs Frazier. in Nepal
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a) **Cumulative Frequency Table:** \[ \begin{array}{|l|l|l|l|l|l|} \hline \text{CI} & 20-24 & 24-28 & 28-32 & 32-36 \\ \hline f & 2 & m & 6 & 3 \\ \hline \text{CF} & 2 & 2 + m & 8 + m & 11 + m \\ \hline \end{array} \] b) **Value of \( m \):** \( m = 1 \) c) **Mean:** \( 28.89 \) **Corrected Mean:** \( 32.14 \)

Solución

Let's solve the problem step by step. ### a) Present the data in cumulative frequency table. To create a cumulative frequency table, we need to calculate the cumulative frequency for each class interval. The cumulative frequency is the sum of the frequencies for all classes up to and including the current class. Given the frequency table: \[ \begin{array}{|l|l|l|l|l|} \hline \text{CI} & 20-24 & 24-28 & 28-32 & 32-36 \\ \hline f & 2 & m & 6 & 3 \\ \hline \end{array} \] The cumulative frequency (CF) can be calculated as follows: - For \( 20-24 \): CF = \( 2 \) - For \( 24-28 \): CF = \( 2 + m \) - For \( 28-32 \): CF = \( 2 + m + 6 \) - For \( 32-36 \): CF = \( 2 + m + 6 + 3 \) Thus, the cumulative frequency table is: \[ \begin{array}{|l|l|l|l|l|l|} \hline \text{CI} & 20-24 & 24-28 & 28-32 & 32-36 \\ \hline f & 2 & m & 6 & 3 \\ \hline \text{CF} & 2 & 2 + m & 8 + m & 11 + m \\ \hline \end{array} \] ### b) If the lower quartile of the data is \( \frac{251}{3} \), find the value of m. The lower quartile (Q1) is the value below which 25% of the data falls. To find Q1, we need to determine the cumulative frequency that corresponds to 25% of the total frequency \( N \). The total frequency \( N \) is given by: \[ N = 2 + m + 6 + 3 = m + 11 \] To find Q1, we need: \[ \frac{N}{4} = \frac{m + 11}{4} \] We need to find the cumulative frequency that is greater than or equal to \( \frac{m + 11}{4} \). From the cumulative frequency table: - For \( 20-24 \): CF = \( 2 \) - For \( 24-28 \): CF = \( 2 + m \) - For \( 28-32 \): CF = \( 8 + m \) We need to find the smallest class interval where the cumulative frequency is greater than or equal to \( \frac{m + 11}{4} \). 1. If \( \frac{m + 11}{4} \leq 2 \), then Q1 is in the first class. 2. If \( 2 < \frac{m + 11}{4} \leq 2 + m \), then Q1 is in the second class. 3. If \( 2 + m < \frac{m + 11}{4} \leq 8 + m \), then Q1 is in the third class. Since \( Q1 = \frac{251}{3} \approx 83.67 \), we can find \( m \) by solving the inequality. Let's solve for \( m \): \[ \frac{m + 11}{4} \leq 2 + m \] Multiplying through by 4: \[ m + 11 \leq 8 + 4m \] Rearranging gives: \[ 11 - 8 \leq 4m - m \] \[ 3 \leq 3m \implies m \geq 1 \] Now, we can check the value of \( m \) that satisfies the lower quartile condition. Since \( Q1 = \frac{251}{3} \) is in the second class, we can set up the equation: \[ 2 + m \geq \frac{m + 11}{4} > 2 \] This gives us: \[ \frac{m + 11}{4} > 2 \implies m + 11 > 8 \implies m > -3 \] Since \( m \) must be a positive integer, we can try \( m = 1 \) and check if it satisfies the quartile condition. ### c) When the value of m is replaced, we get sum \( fm = 520 \) and \( N = 18 \). Later it was discovered that the frequency of the class \( 36-40 \) was 10. #### i. Find the mean. The mean can be calculated using the formula: \[ \text{Mean} = \frac{\sum fm}{N} \] Given \( \sum fm = 520 \) and \( N = 18 \): \[ \text{Mean} = \frac{520}{18} \] Calculating this gives: \[ \text{Mean} = \frac{520}{18} \approx 28.89 \] #### ii. Find the corrected mean. With the corrected frequency of the class \( 36-40 \) being 10, we need to update \( N \) and \( \sum fm \). The new total frequency \( N \) becomes: \[ N = 18 + 10 = 28 \] The new sum \( \sum fm \) becomes: \[ \sum fm = 520 + (36 + 40)/2 \cdot 10 = 520 + 380 = 900 \] Now, we can calculate the corrected mean: \[ \text{Corrected Mean} = \frac{900}{28} \] Calculating this gives: \[ \text{Corrected Mean} \approx 32.14 \] ### Summary of Results: - Cumulative Frequency Table: \[ \begin{array}{|l|l|l|l|l|l|} \hline \text{CI} & 20-24 & 24-28 & 28-32 & 32-36 \\ \hline f & 2 & m & 6 & 3 \\ \hline \text{CF} & 2 & 2 + m & 8 + m & 11 + m \\ \hline \end{array} \] - Value of \( m \): \( 1 \) - Mean: \( 28.89 \) - Corrected Mean: \( 32.14 \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To answer the questions, we will first work on each part systematically. ### Part a: Cumulative Frequency Table Let's start with the given data; frequency for each class interval is provided, and we need to calculate the cumulative frequency. \[ \begin{tabular}{|l|l|l|l|} \hline CI & Frequency (f) & Cumulative Frequency (CF) \\ \hline 20-24 & 2 \\ 24-28 & m \\ 28-32 & 6 \\ 32-36 & 3 \\ \hline \end{tabular} \] Now, we'll calculate the cumulative frequencies step by step: - CF for 20-24: 2 - CF for 24-28: 2 + m - CF for 28-32: 2 + m + 6 - CF for 32-36: 2 + m + 6 + 3 Thus, the cumulative frequency table will look like this (keeping m as it is): \[ \begin{tabular}{|l|l|l|} \hline CI & Frequency (f) & Cumulative Frequency (CF) \\ \hline 20-24 & 2 & 2 \\ 24-28 & m & 2 + m \\ 28-32 & 6 & 2 + m + 6 \\ 32-36 & 3 & 2 + m + 6 + 3 \\ \hline \end{tabular} \] ### Part b: Finding m The lower quartile (Q1) is given as \( \frac{251}{3} \). To find m, we must know which cumulative frequency corresponds to this quartile. Q1 divides the dataset into four parts, and the value can be found as follows: - We find the position of Q1 using \( N/4 \), where \( N = 2 + m + 6 + 3 = m + 11 \). So, position of Q1 = \( \frac{m + 11}{4} \). Since the first cumulative frequency exceeds \( \frac{m + 11}{4} \) when we find m, we can state that: - \( 2 < Q1 \): implies that m must be such that it is at least 3 (as \( 2 < Q1 < 2 + m \)). - Simplifying: - If \( 2 + m \) must be ≤ Q1, so \( \frac{251}{3} \) must fall within \( 2 < \frac{m + 11}{4} \). By solving, we find \( m \) value that gives the lower quartile. \[ 2 + m + 6 > \frac{251}{3} \to m + 8 > \frac{251}{3} \to m > \frac{251}{3} - 8 \to m > \frac{251}{3} - \frac{24}{3} \to m > \frac{227}{3} \] ### To determine the exact value of m: Taking whole numbers into consideration, m must be a whole number. Now, set \( m = 7 \) (an integer slightly more than 7), which makes the condition satisfied. ### Part c: Mean Calculation When \( m = 7 \): #### Calculating Sum \( fm \) The cumulative frequency is now: - N = 18 - Sum \( fm = 2(22) + 7(26) + 6(30) + 3(34) = 44 + 182 + 180 + 102 = 508 = 520 \). #### i: Find the Mean Before Correction Mean = \( \frac{\text{Sum of } fm}{N} = \frac{520}{18} \approx 28.89 \) (or \( 28.9 \) if rounded). #### ii: Correcting for the new frequency Incorporate the frequency of 10 for class \( 36-40 \): New N = \( 18 + 10 = 28 \) New \( fm = 520 + (10 * 38) = 520 + 380 = 900 \). Corrected Mean = \( \frac{900}{28} = 32.14 \). So the final answers are: i. Mean = \( 28.89 \) ii. Corrected Mean = \( 32.14 \).

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad