18. [-11 Points] DETAILS MY NOTES SCA
Find \( \lim _{x \rightarrow \infty} f(x) \) if, for all \( x>1 \),
\( \frac{8 e^{x}-25}{2 e^{x}}
Ask by Pollard Lynch. in the United States
Feb 26,2025
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find \( \lim_{x \rightarrow \infty} f(x) \), we need to analyze the behavior of the bounds given for \( f(x) \). 1. First, consider the upper bound: \[ \frac{4 \sqrt{x}}{\sqrt{x-1}}. \] As \( x \) approaches infinity, we can simplify this expression: \[ \sqrt{x-1} \approx \sqrt{x}, \] thus, \[ \frac{4 \sqrt{x}}{\sqrt{x-1}} \approx \frac{4 \sqrt{x}}{\sqrt{x}} = 4. \] Therefore, \[ \lim_{x \rightarrow \infty} \frac{4 \sqrt{x}}{\sqrt{x-1}} = 4. \] 2. Now, consider the lower bound: \[ \frac{8 e^{x}-25}{2 e^{x}}. \] As \( x \) approaches infinity, \( 25 \) becomes negligible compared to \( 8 e^{x} \): \[ \frac{8 e^{x}-25}{2 e^{x}} \approx \frac{8 e^{x}}{2 e^{x}} = 4. \] Thus, \[ \lim_{x \rightarrow \infty} \frac{8 e^{x}-25}{2 e^{x}} = 4. \] Since \( f(x) \) is squeezed between these two limits, by the Squeeze Theorem: \[ \lim_{x \rightarrow \infty} f(x) = 4. \] In conclusion: \[ \lim _{x \rightarrow \infty} f(x) = 4. \]
preguntas relacionadas
