Pregunta
upstudy study bank question image url

Suppose \( \$ 1800 \) is borrowed for four years at an interest rate of \( 3 \% \) per year, compounded continuously. Find the total amount owed, assuming no payments are made until the end. Round to the nearest cent.

Ask by Mcguire Rojas. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The total amount owed is approximately \$2029.49.

Solución

When interest is compounded continuously, the amount owed can be calculated using the formula:   A = P · e^(r · t) where:   P = principal amount (the original sum borrowed),   r = annual interest rate (in decimal form), and   t = time in years. For this problem:   P = $1800,   r = 3% = 0.03, and   t = 4 years. Plugging in the values:   A = 1800 · e^(0.03 × 4)   A = 1800 · e^(0.12) Using a calculator, e^(0.12) ≈ 1.12749685. Now, calculate:   A ≈ 1800 × 1.12749685 ≈ 2029.49433 Rounded to the nearest cent, the total amount owed is approximately $2029.49.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the total amount owed when borrowing money at a continuously compounded interest rate, you can use the formula: \[ A = Pe^{rt} \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( t \) is the time the money is invested or borrowed for, in years. - \( e \) is the base of the natural logarithm, approximately equal to 2.71828. Given: - \( P = 1800 \) - \( r = 0.03 \) - \( t = 4 \) Plugging in these values: \[ A = 1800 \cdot e^{0.03 \cdot 4} \] \[ A = 1800 \cdot e^{0.12} \] Now, calculating \( e^{0.12} \): \[ e^{0.12} \approx 1.1275 \] Now substitute this value back into the formula: \[ A \approx 1800 \cdot 1.1275 \approx 2030.50 \] Thus, the total amount owed after four years, rounded to the nearest cent, is approximately **\$2030.50**.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad