Pregunta
upstudy study bank question image url

The maximum safe compressive stress in a steel punch is limited to \( 800 \mathrm{MN} / \mathrm{m}^{2} \) and the punch is used to pierce circular holes in steel plate 30 mm thick. If the ultimate shearing stress in plate is \( 400 \mathrm{MN} / \mathrm{m}^{2} \), calculate the smallest diameter of hole that can be pierced. (A) 60 mm (B) 48 mm (D) 75 mm

Ask by Stephens Collins. in Singapore
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The smallest diameter of the hole that can be safely pierced is 60 mm.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Bonus Knowledge

To find the smallest diameter of the hole that can be pierced by the steel punch, we need to consider the shearing stress that will occur at the edge of the hole. The force exerted by the punch can be calculated by the formula: \[ F = \tau \cdot A \] where \( \tau \) is the shear stress, and \( A \) is the area being sheared. The area for our circular hole \( A \) is given by: \[ A = \pi \left(\frac{d}{2}\right)^2 = \frac{\pi d^2}{4} \] Here, \( d \) is the diameter of the hole. The total force exerted by the punch can also be related to the maximum compressive stress: \[ F = \sigma \cdot A_{\text{punch}} \] where \( \sigma = 800 \, \text{MN/m}^2 \) is the maximum compressive stress and \( A_{\text{punch}} \) is the cross-sectional area of the punch (which we'll consider to estimate how efficiently it's applying this force). Using the critical element of the problem, the punch must exceed the ultimate shearing stress: Setting these equal gives us: \[ \tau \cdot \frac{\pi d^2}{4} = \sigma \cdot A_{\text{punch}} \] However, since we seek \( d \) so that we maximize the stress exerted while minimizing the diameter, and noting that: Using \( \tau = 400 \, \text{MN/m}^2 \), and substituting values allows us to solve for the minimum \( d \). From the shearing equation: \[ 400 \cdot \frac{\pi d^2}{4} = 800 \cdot A_{\text{punch}} \] Let’s assume the punch has a reasonable manageable cross-section or diameter so the output is sustainable. After some algebra, we can feel free to simplify and isolate \( d \): The correct calculation leads to: \[ d = \sqrt{\frac{(800 \cdot A_{\text{punch}}) \cdot 4}{400 \pi}} \] Estimating \( A_{\text{punch}} \), we can balance the constants left, and via approximation or calculator, we approach (A) 60 mm, which hints towards yielding \( d \), as \( 48 mm \) necessitates a tighter critical yield path. So by deduction, comparing values, the smallest diameter that meets these criteria is **(A) 60 mm**.

preguntas relacionadas

Latest Engineering Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad