Use the Gauss-Jordan method to solve the given system of equations. \[ \begin{aligned} x+y-z & =8 \\ 4 x-y+z & =2 \\ x-3 y+2 z & =-26 \end{aligned} \] Select the correct choice below and till in any answer boxes within your choice. A. There is one solution. The solution is \( \square \) \( \square \) , ) (Type an exact answer in simplified form.) B. There are infinitely many solutions. The solutions are \( \square \) , , \( z \) ), where \( z \) is any real number. C. There is no solution.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To solve the given system of equations using the Gauss-Jordan method, we first represent the system as an augmented matrix: \[ \begin{bmatrix} 1 & 1 & -1 & | & 8 \\ 4 & -1 & 1 & | & 2 \\ 1 & -3 & 2 & | & -26 \end{bmatrix} \] Now, we apply row operations to transform this matrix into reduced row echelon form. 1. Swap \( R_1 \) and \( R_3 \): \[ \begin{bmatrix} 1 & -3 & 2 & | & -26 \\ 4 & -1 & 1 & | & 2 \\ 1 & 1 & -1 & | & 8 \end{bmatrix} \] 2. Replace \( R_2 \) with \( R_2 - 4R_1 \) and \( R_3 \) with \( R_3 - R_1 \): \[ \begin{bmatrix} 1 & -3 & 2 & | & -26 \\ 0 & 11 & -7 & | & 106 \\ 0 & 4 & -3 & | & 34 \end{bmatrix} \] 3. Now simplify further by replacing \( R_2 \) and making \( R_3 \) a multiple of \( R_2 \): Scale \( R_2 \): \[ \begin{bmatrix} 1 & -3 & 2 & | & -26 \\ 0 & 1 & -\frac{7}{11} & | & \frac{106}{11} \\ 0 & 4 & -3 & | & 34 \end{bmatrix} \] 4. Replace \( R_3 \) with \( R_3 - 4R_2 \): \[ \begin{bmatrix} 1 & -3 & 2 & | & -26 \\ 0 & 1 & -\frac{7}{11} & | & \frac{106}{11} \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \] At this point, we interpret the last row of zeros as a dependent equation. We can express \( z \) in terms of a free variable. From \( R_2 \): \[ y - \frac{7}{11}z = \frac{106}{11} \Rightarrow y = \frac{106}{11} + \frac{7}{11}z \] Substituting into \( R_1 \): \[ x - 3y + 2z = -26 \Rightarrow x - 3\left(\frac{106}{11} + \frac{7}{11}z\right) + 2z = -26 \] Solving gives: \[ x = -26 + \frac{318}{11} - \frac{21}{11}z + 2z = \frac{-286 + 318 + (2 - 21)z}{11} = \frac{32 - 19z}{11} \] Thus, the general solution form is: \[ (x, y, z) = \left(\frac{32 - 19z}{11}, \frac{106 + 7z}{11}, z\right) \] This means there are infinitely many solutions. The final answer is: B. There are infinitely many solutions. The solutions are \(\left( \frac{32 - 19z}{11}, \frac{106 + 7z}{11}, z \right) \), where \( z \) is any real number.
