Pregunta
upstudy study bank question image url

Use the Gauss-Jordan method to solve the given system of equations. \[ \begin{aligned} x+2 y+z & =8 \\ 2 x+y-5 z & =1 \\ 3 x+y+2 z & =-1 \end{aligned} \] What is the reduced row echelon form of the augmented matrix? (Simplify your answers.) \( \square \) \( \square \) \( \square \) \( \square \) \( \square \)

Ask by Ayala Gonzalez. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The reduced row echelon form of the augmented matrix is: \[ \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 3 \\ \end{bmatrix} \]

Solución

Solve the system of equations \( x+2y+z=8;2x+y-5z=1;3x+y+2z=-1 \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}x+2y+z=8\\2x+y-5z=1\\3x+y+2z=-1\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}x=8-2y-z\\2x+y-5z=1\\3x+y+2z=-1\end{array}\right.\) - step2: Substitute the value of \(x:\) \(\left\{ \begin{array}{l}2\left(8-2y-z\right)+y-5z=1\\3\left(8-2y-z\right)+y+2z=-1\end{array}\right.\) - step3: Simplify: \(\left\{ \begin{array}{l}16-3y-7z=1\\24-5y-z=-1\end{array}\right.\) - step4: Solve the equation: \(\left\{ \begin{array}{l}16-3y-7z=1\\z=25-5y\end{array}\right.\) - step5: Substitute the value of \(z:\) \(16-3y-7\left(25-5y\right)=1\) - step6: Simplify: \(-159+32y=1\) - step7: Move the constant to the right side: \(32y=1+159\) - step8: Add the numbers: \(32y=160\) - step9: Divide both sides: \(\frac{32y}{32}=\frac{160}{32}\) - step10: Divide the numbers: \(y=5\) - step11: Substitute the value of \(y:\) \(z=25-5\times 5\) - step12: Calculate: \(z=0\) - step13: Substitute the values of \(y,z:\) \(x=8-2\times 5-0\) - step14: Substitute back: \(x=8-2\times 5\) - step15: Calculate: \(x=-2\) - step16: Calculate: \(\left\{ \begin{array}{l}x=-2\\y=5\\z=0\end{array}\right.\) - step17: Check the solution: \(\left\{ \begin{array}{l}x=-2\\y=5\\z=0\end{array}\right.\) - step18: Rewrite: \(\left(x,y,z\right) = \left(-2,5,0\right)\) The solution to the system of equations is \( x = -2, y = 5, z = 0 \). To find the reduced row echelon form of the augmented matrix, we need to perform row operations on the augmented matrix. The augmented matrix for the system of equations is: \[ \begin{bmatrix} 1 & 2 & 1 & 8 \\ 2 & 1 & -5 & 1 \\ 3 & 1 & 2 & -1 \\ \end{bmatrix} \] Performing row operations to reduce the matrix to reduced row echelon form, we get: \[ \begin{bmatrix} 1 & 2 & 1 & 8 \\ 0 & -3 & -7 & -15 \\ 0 & -5 & -1 & -25 \\ \end{bmatrix} \] \[ \begin{bmatrix} 1 & 2 & 1 & 8 \\ 0 & 1 & \frac{7}{3} & 5 \\ 0 & 0 & 1 & 3 \\ \end{bmatrix} \] \[ \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 3 \\ \end{bmatrix} \] Therefore, the reduced row echelon form of the augmented matrix is: \[ \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 3 \\ \end{bmatrix} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the given system of equations using the Gauss-Jordan method, we start by writing the augmented matrix: \[ \begin{bmatrix} 1 & 2 & 1 & | & 8 \\ 2 & 1 & -5 & | & 1 \\ 3 & 1 & 2 & | & -1 \end{bmatrix} \] Next, we perform row operations to achieve reduced row echelon form (RREF). 1. **R1** is already fine: \( R_1 \rightarrow R_1 \). 2. Eliminate \( x \) from **R2** and **R3**: \[ R_2 \rightarrow R_2 - 2R_1 \Rightarrow [0, -3, -7 | -15] \] \[ R_3 \rightarrow R_3 - 3R_1 \Rightarrow [0, -5, -1 | -25] \] The matrix now looks like: \[ \begin{bmatrix} 1 & 2 & 1 & | & 8 \\ 0 & -3 & -7 & | & -15 \\ 0 & -5 & -1 & | & -25 \end{bmatrix} \] 3. Next, we simplify **R2** and **R3**: Divide **R2** by -3: \[ R_2 \rightarrow -\frac{1}{3} R_2 \Rightarrow [0, 1, \frac{7}{3} | 5] \] 4. Then, make R3 dependent on R2: \[ R_3 \rightarrow R_3 + 5R_2 \Rightarrow [0, 0, \frac{8}{3} | 0] \] The matrix is now: \[ \begin{bmatrix} 1 & 2 & 1 & | & 8 \\ 0 & 1 & \frac{7}{3} & | & 5 \\ 0 & 0 & 1 & | & 0 \end{bmatrix} \] 5. Finally, we back substitute to achieve the leading 1s in each pivot column: \[ R_1 \rightarrow R_1 - R_3 \quad R_2 \rightarrow R_2 - \frac{7}{3}R_3 \] After performing these steps, our augmented matrix simplifies to: \[ \begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & 5 \\ 0 & 0 & 1 & | & 0 \end{bmatrix} \] So, the reduced row echelon form of the augmented matrix is: \[ \begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & 5 \\ 0 & 0 & 1 & | & 0 \end{bmatrix} \] The final solutions for \( x, y, z \) are: \[ x = 1, \quad y = 5, \quad z = 0 \]

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad