Pregunta
upstudy study bank question image url

Luestion 2 (1 point) Find " \( m \) " for the investment of \( \$ 1000.00 \) for 2 years at \( 1.8 \% \) compounde semi-annually.

Ask by John Allan. in Canada
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The value of \( m \) is approximately 1.03649.

Solución

To find the value of \( m \) for the investment of $1000.00 for 2 years at 1.8% compounded semi-annually, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (initial investment). - \( r \) is the annual interest rate (in decimal form). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the time the money is invested for in years. Given: - \( P = \$1000.00 \) - \( r = 1.8\% = 0.018 \) - \( n = 2 \) (compounded semi-annually) - \( t = 2 \) years Substitute the given values into the formula: \[ A = 1000 \left(1 + \frac{0.018}{2}\right)^{2 \cdot 2} \] Now, we can calculate the value of \( A \) and then find the value of \( m \) by dividing \( A \) by \( P \). Calculate the value by following steps: - step0: Calculate: \(1000\left(1+\frac{0.018}{2}\right)^{2\times 2}\) - step1: Divide the terms: \(1000\left(1+\frac{9}{1000}\right)^{2\times 2}\) - step2: Add the numbers: \(1000\left(\frac{1009}{1000}\right)^{2\times 2}\) - step3: Multiply the numbers: \(1000\left(\frac{1009}{1000}\right)^{4}\) - step4: Simplify: \(1000\times \frac{1009^{4}}{1000^{4}}\) - step5: Reduce the numbers: \(1\times \frac{1009^{4}}{1000^{3}}\) - step6: Multiply: \(\frac{1009^{4}}{1000^{3}}\) The value of \( A \) is approximately $1036.49. Now, we can find the value of \( m \) by dividing \( A \) by \( P \): \[ m = \frac{A}{P} = \frac{1036.49}{1000} \] Therefore, the value of \( m \) is approximately 1.03649.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the value of \( m \) (the amount after 2 years), you can use the compound interest formula: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Here, \( P = 1000 \), \( r = 0.018 \), \( n = 2 \) (since it's compounded semi-annually), and \( t = 2 \). Plugging in these values gives: \[ A = 1000 \left(1 + \frac{0.018}{2}\right)^{2 \times 2} \] \[ A = 1000 \left(1 + 0.009\right)^{4} \] \[ A \approx 1000 \times (1.009)^{4} \approx 1000 \times 1.0364 \approx 1036.40 \] So, the total amount after 2 years is approximately \( 1036.40 \). Now, let’s get a bit more colorful! Did you know that the concept of compound interest dates back to ancient Mesopotamia? Scribes recorded accounts of loans with interest over 4,000 years ago! It’s fascinating how a simple idea has shaped the financial world for millennia, paving the way for modern banking systems! If you're ever lost in the world of compound interest, remember to break it down into bite-sized pieces. A common mistake is to confuse the number of compounding periods with the total number of years. Always stay organized with your variables! Keep a calculator handy and practice with various interest rates to see how small differences can impact your investments. Happy investing!

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad