\( \lim _{z \rightarrow 1+5i} (|z|+z^{2}) \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To evaluate the limit \( \lim _{z \rightarrow 1+5i} (|z|+z^{2}) \), we first need to find the magnitude \( |z| \) and the square \( z^2 \) as \( z \) approaches \( 1 + 5i \). 1. The magnitude \( |z| \) is given by \( |1 + 5i| = \sqrt{1^2 + 5^2} = \sqrt{1 + 25} = \sqrt{26} \). 2. Next, we compute \( z^2 \): \[ z^2 = (1 + 5i)^2 = 1^2 + 2 \cdot 1 \cdot 5i + (5i)^2 = 1 + 10i - 25 = -24 + 10i. \] Now, substituting these into the limit expression: \[ |z| + z^2 = \sqrt{26} + (-24 + 10i) = -24 + \sqrt{26} + 10i. \] Therefore, the limit is: \[ \lim _{z \rightarrow 1+5i} (|z| + z^2) = -24 + \sqrt{26} + 10i. \]
preguntas relacionadas
