Pregunta
upstudy study bank question image url

At the beginning of a study, a certain culture of bacteria has a population of 810 . The population grows according to a continuous exponential growth model.
After 21 days, there are 972 bacteria.

Ask by Macdonald Munoz. in the United States
Mar 31,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) The formula relating to is:
(b) After 22 days, there are approximately 980 bacteria.

Solución

Given that the population of bacteria grows according to a continuous exponential growth model, we can use the formula for exponential growth to relate the number of bacteria to the time since the beginning of the study.
The formula for exponential growth is given by:
where:
  • is the initial population of bacteria,
  • is the growth rate,
  • is the time since the beginning of the study.
We are given that the initial population of bacteria is 810 and after 21 days, there are 972 bacteria. We can use this information to find the growth rate and then use it to find the number of bacteria after 22 days.
Let’s first find the growth rate using the given information:
Now, we can solve for and then use it to find the number of bacteria after 22 days.
Solve the equation by following steps:
  • step0: Solve for :
  • step1: Reorder the terms:
  • step2: Swap the sides:
  • step3: Divide both sides:
  • step4: Divide the numbers:
  • step5: Take the logarithm of both sides:
  • step6: Evaluate the logarithm:
  • step7: Divide both sides:
  • step8: Divide the numbers:
  • step9: Simplify:

    The growth rate is given by:
Now, we can use this growth rate to find the number of bacteria after 22 days. The formula for the number of bacteria after 22 days is:
Substitute the value of into the formula and calculate the number of bacteria after 22 days.
Calculate the value by following steps:
  • step0: Calculate:
  • step1: Use the logarithm product rule:
  • step2: Multiply the numbers:
  • step3: Transform the expression:
  • step4: Simplify:
  • step5: Reduce the numbers:
  • step6: Multiply:
  • step7: Simplify:
  • step8: Simplify:
  • step9: Multiply by the Conjugate:
  • step10: Multiply the numbers:
  • step11: Multiply the numbers:

    The number of bacteria after 22 days is approximately 980.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To express the growth of the bacteria population, we start with the continuous exponential growth formula, which is given by . Here, is the initial population, which is 810, and is the population at time days.
We can determine using the information provided. At days, . Therefore, we have:
From this, we can isolate and find . Solving for , we can then express it fully in the formula.
Thus, the formula becomes .
To find the number of bacteria after 22 days, we substitute into our formula:
After solving, round the final number to the nearest whole number to find the total bacteria count!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad