Pregunta
upstudy study bank question image url

5) Katie deposited \( \$ 2,000 \) into a savings account that paid \( 2.5 \% \) interest, compounded continuously. How many years will it take for Katie to have \( \$ 5000 \) ? *Show equation for credit

Ask by Allan Ray. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

It will take approximately 36.65 years for Katie's deposit to grow to \$5,000.

Solución

We begin with the formula for continuously compounded interest:   A = P · e^(rt) Where:   A = final amount   P = initial principal   r = interest rate (in decimal)   t = time in years Given:   A = 5000   P = 2000   r = 0.025 Substitute the given values into the equation:   5000 = 2000 · e^(0.025t) Divide both sides by 2000:   e^(0.025t) = 5000 / 2000 = 2.5 Take the natural logarithm of both sides:   0.025t = ln(2.5) Solve for t:   t = ln(2.5) / 0.025 This is the equation for how many years it will take for Katie’s deposit to grow to $5000. Plug in the values for calculation to get an approximate value:   t ≈ ln(2.5) / 0.025 ≈ 0.9163 / 0.025 ≈ 36.65 years Thus, it will take approximately 36.65 years for the balance to reach $5000.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find out how many years it will take for Katie's investment to grow from \( \$2,000 \) to \( \$5,000 \) with continuous compounding, we use the formula: \[ A = Pe^{rt} \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial deposit). - \( r \) is the annual interest rate (decimal). - \( t \) is the time the money is invested for in years. - \( e \) is Euler's number, approximately equal to 2.71828. Here \( P = 2000 \), \( A = 5000 \), and \( r = 0.025 \). Plugging in the values: \[ 5000 = 2000 e^{0.025t} \] To isolate \( t \), divide both sides by \( 2000 \): \[ 2.5 = e^{0.025t} \] Applying the natural logarithm to both sides gives: \[ \ln(2.5) = 0.025t \] Now, solve for \( t \): \[ t = \frac{\ln(2.5)}{0.025} \] Calculate \( t \) to find out how many years it will take for Katie to reach her goal. --- In the world of finance, continuous compounding means that interest is calculated and added to the account balance at every moment, maximizing the investment potential. This concept can lead to significantly faster growth compared to traditional compounding methods, which only calculate interest at specific intervals. Only a few savvy investors know that continuously compounding even a small amount can accumulate to staggering sums over time. This principle isn’t just for personal savings. Businesses also leverage continuous compounding to calculate returns on investments, enhancing strategic financial planning!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad