(b) What percentage of standardized test scores is less than 183 or greater than \( 867 ? \) \( \% \) (Round to one decimal place as needed.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To find the percentage of standardized test scores that is less than 183 or greater than 867, we need to know the distribution of the scores. Generally, if the scores follow a normal distribution, we can calculate the z-scores for 183 and 867 and then use the standard normal distribution table to find the corresponding percentages. Assuming a mean (μ) and standard deviation (σ) for the scores, calculate the z-scores: \( z = \frac{{x - μ}}{σ} \) Once you determine the z-scores, look them up in the standard normal distribution table to find the probabilities. The percentage you seek is then the sum of the probabilities for the two tails of the distribution corresponding to those z-scores. Don't forget to round your final answer to one decimal place.
