Pregunta
upstudy study bank question image url

Find the slope of the line passing through the pair of points or state that the slope is undefined. Then indicate whether the line through the points rises, falls, is horizontal, or is vertical. \( (-1,-2) \) and \( (-8,-2) \) Select the correct choice below and, if necessary, fill in the answer box within your choice. A. The slope is \( \square \). (Simplify your answer.) B. The slope is undefined. Gew an example more help -

Ask by Lee Gibbs. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The slope is 0, and the line is horizontal.

Solución

To find the slope of the line passing through the points \((-1, -2)\) and \((-8, -2)\), we can use the formula for the slope \(m\) between two points \((x_1, y_1)\) and \((x_2, y_2)\): \[ m = \frac{y_2 - y_1}{x_2 - x_1} \] ### Step 1: Identify the coordinates From the points given: - \((x_1, y_1) = (-1, -2)\) - \((x_2, y_2) = (-8, -2)\) ### Step 2: Substitute the coordinates into the slope formula Now, we can substitute the values into the slope formula: \[ m = \frac{-2 - (-2)}{-8 - (-1)} \] ### Step 3: Simplify the expression Calculating the numerator and denominator: - The numerator: \[ -2 - (-2) = -2 + 2 = 0 \] - The denominator: \[ -8 - (-1) = -8 + 1 = -7 \] So, we have: \[ m = \frac{0}{-7} \] ### Step 4: Final calculation Since the numerator is 0, the slope \(m\) is: \[ m = 0 \] ### Conclusion A slope of 0 indicates that the line is horizontal. Thus, the correct choice is: A. The slope is \(0\). The line is horizontal.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the slope of the line passing through the points \((-1,-2)\) and \((-8,-2)\), we apply the slope formula \(m = \frac{y_2 - y_1}{x_2 - x_1}\). Here, \(y_1 = -2\) and \(y_2 = -2\), while \(x_1 = -1\) and \(x_2 = -8\). Plugging in these values, we have: \[ m = \frac{-2 - (-2)}{-8 - (-1)} = \frac{0}{-7} = 0. \] Since the numerator is zero, this means the slope is 0, signifying a horizontal line. So the line neither rises nor falls – it stays level and flat as a pancake! Now, fun fact: if you have a line that runs horizontally (like a flat road or a calm sea), every point on that line shares the same \(y\)-coordinate. So whether you’re at \((-1,-2)\) or wandering over to \((-8,-2)\), the view stays the same! Keep that in mind for when you’re thinking about slope!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad