Pregunta
(a) Simplify: (1) \( \frac{2^{x+2}+2^{x+3}}{12 \cdot 2^{x}} \)
Ask by Erickson Greene. in South Africa
Feb 26,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The simplified form of the expression is 1.
Solución
Calculate or simplify the expression \( (2^(x+2)+2^(x+3))/(12*2^x) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(2^{x+2}+2^{x+3}\right)}{\left(12\times 2^{x}\right)}\)
- step1: Remove the parentheses:
\(\frac{2^{x+2}+2^{x+3}}{12\times 2^{x}}\)
- step2: Add the terms:
\(\frac{3\times 2^{x+2}}{12\times 2^{x}}\)
- step3: Reduce the fraction:
\(1\)
The simplified form of the expression \( \frac{2^{x+2}+2^{x+3}}{12 \cdot 2^{x}} \) is 1.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


The Deep Dive
To simplify the expression \( \frac{2^{x+2}+2^{x+3}}{12 \cdot 2^{x}} \), we first factor out \( 2^{x+2} \) from the numerator. So, we have: \[ 2^{x+2} + 2^{x+3} = 2^{x+2}(1 + 2) = 2^{x+2} \cdot 3 \] Now the expression becomes: \[ \frac{2^{x+2} \cdot 3}{12 \cdot 2^{x}} \] Next, we can simplify the fraction: \[ = \frac{3 \cdot 2^{x+2}}{12 \cdot 2^{x}} \] \[ = \frac{3}{12} \cdot \frac{2^{x+2}}{2^{x}} = \frac{1}{4} \cdot 2^{2} = \frac{1}{4} \cdot 4 = 1 \] So the simplified expression is: \[ \boxed{1} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium