A culture of bacteria in a particular dish has an initial population of 300 cells grows at a rate of \( \mathrm{N}^{\prime}(\mathrm{t})=40 e^{0.29863 \mathrm{t}} \) cells/day. a. Find the population \( \mathrm{N}(\mathrm{t}) \) at any time \( \mathrm{t} \geq 0 \). b. What is the population after 14 days?
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To find the population \( N(t) \), we need to integrate the growth rate \( N'(t) = 40 e^{0.29863 t} \). **Part a:** The integral of \( N'(t) \) is: \[ N(t) = \int 40 e^{0.29863 t} \, dt = \frac{40}{0.29863} e^{0.29863 t} + C \] Calculating the integral: \[ N(t) \approx 134.16 e^{0.29863 t} + C \] Given that the initial population at \( t = 0 \) is 300, we can solve for \( C \): \[ N(0) = 134.16 e^{0} + C = 300 \implies 134.16 + C = 300 \implies C \approx 165.84 \] Thus, the complete function for population is: \[ N(t) \approx 134.16 e^{0.29863 t} + 165.84 \] **Part b:** To find the population after 14 days, substitute \( t = 14 \) into the population function: \[ N(14) \approx 134.16 e^{0.29863 \times 14} + 165.84 \] Calculating \( e^{0.29863 \times 14} \) gives: \[ e^{4.18182} \approx 65.5 \implies N(14) \approx 134.16 \times 65.5 + 165.84 \] \[ N(14) \approx 8796.8 + 165.84 \approx 8962.64 \] Rounding this, the population after 14 days is approximately **8963 bacteria cells.**
