Pregunta
upstudy study bank question image url

2. If the lengith of the side of a square is doubted what is the ratio of the area of the originat square to the area of the now squares Aiso wate you answers as 6 common fraction, a decimat fraction and a percentage

Ask by Pope Rogers. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The ratio of the area of the original square to the new square is \( \frac{1}{4} \), which is 0.25 in decimal and 25% in percentage.

Solución

Let's break down the problem step by step. 1. **Known Conditions:** - Let the length of the side of the original square be \( s \). - The area of the original square \( A_1 \) is given by the formula: \[ A_1 = s^2 \] - If the length of the side is doubled, the new length becomes \( 2s \). - The area of the new square \( A_2 \) is given by: \[ A_2 = (2s)^2 = 4s^2 \] 2. **Finding the Ratio of Areas:** - The ratio of the area of the original square to the area of the new square is: \[ \text{Ratio} = \frac{A_1}{A_2} = \frac{s^2}{4s^2} = \frac{1}{4} \] 3. **Expressing the Ratio in Different Forms:** - As a common fraction: \( \frac{1}{4} \) - As a decimal fraction: \( 0.25 \) - As a percentage: \( 25\% \) Thus, the ratio of the area of the original square to the area of the new square is: - Common fraction: \( \frac{1}{4} \) - Decimal fraction: \( 0.25 \) - Percentage: \( 25\% \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

When you double the length of the side of a square, the area increases by a factor of four! This is because area is calculated by squaring the length of the side (A = side²). So, if the side of the original square is "s," its area is s², and if you double the side to "2s," the new area is (2s)² = 4s². Thus, the ratio of the area of the original square to the new square is 1:4. In common fractions, this can be expressed as 1/4. As a decimal, it’s 0.25, and if we turn that into a percentage, it becomes 25%. So, the areas of the original and new squares relate like this: Original square's area (1) to New square's area (4) = 1:4 = 0.25 = 25%.

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad