Pregunta
upstudy study bank question image url

How much heat (in kJ ) is released or absorbed in the reaction of 10.0 grams of SiO 2 (quartz) with excess hydrofluoric acid? You must calculate the enthalpy of the reaction first. \( 1 \mathrm{SiO}_{2(\mathrm{~s})}+4 \mathrm{HF}_{(a \mathrm{aq})} \rightarrow \mathrm{SiF}_{4(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \) Enter the VALUE only (and watch your sign).

Ask by Cruz Lewis. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The heat released in the reaction is \(-51.4\) kJ.

Solución

To calculate the heat released or absorbed in the reaction of SiO₂ with hydrofluoric acid, we first need to determine the enthalpy change (\( \Delta H \)) for the reaction. 1. **Identify the reaction**: \[ 1 \mathrm{SiO}_{2(\mathrm{s})} + 4 \mathrm{HF}_{(aq)} \rightarrow \mathrm{SiF}_{4(g)} + 2 \mathrm{H}_{2} \mathrm{O}_{(l)} \] 2. **Find the standard enthalpy of formation (\( \Delta H_f^\circ \)) values** for each compound involved in the reaction: - \( \Delta H_f^\circ \) for \( \mathrm{SiO}_2(s) \) - \( \Delta H_f^\circ \) for \( \mathrm{HF}(aq) \) - \( \Delta H_f^\circ \) for \( \mathrm{SiF}_4(g) \) - \( \Delta H_f^\circ \) for \( \mathrm{H}_2O(l) \) 3. **Use the formula for the enthalpy change of the reaction**: \[ \Delta H_{reaction} = \sum \Delta H_f^\circ \text{(products)} - \sum \Delta H_f^\circ \text{(reactants)} \] 4. **Calculate the moles of SiO₂** in 10.0 grams: - Molar mass of \( \mathrm{SiO}_2 \) = 60.08 g/mol \[ \text{Moles of } \mathrm{SiO}_2 = \frac{10.0 \text{ g}}{60.08 \text{ g/mol}} \approx 0.166 \text{ mol} \] 5. **Calculate the heat released or absorbed** using the enthalpy change and the moles of SiO₂. Now, let's proceed with the calculations. Assuming the following standard enthalpy of formation values: - \( \Delta H_f^\circ \) for \( \mathrm{SiO}_2(s) = -911.0 \, \text{kJ/mol} \) - \( \Delta H_f^\circ \) for \( \mathrm{HF}(aq) = -270.0 \, \text{kJ/mol} \) - \( \Delta H_f^\circ \) for \( \mathrm{SiF}_4(g) = -1110.0 \, \text{kJ/mol} \) - \( \Delta H_f^\circ \) for \( \mathrm{H}_2O(l) = -285.8 \, \text{kJ/mol} \) Now, let's calculate \( \Delta H_{reaction} \): \[ \Delta H_{reaction} = \left[ \Delta H_f^\circ(\mathrm{SiF}_4) + 2 \Delta H_f^\circ(\mathrm{H}_2O) \right] - \left[ \Delta H_f^\circ(\mathrm{SiO}_2) + 4 \Delta H_f^\circ(\mathrm{HF}) \right] \] Substituting the values: \[ \Delta H_{reaction} = \left[ -1110.0 + 2(-285.8) \right] - \left[ -911.0 + 4(-270.0) \right] \] Calculating the products: \[ \Delta H_{reaction} = \left[ -1110.0 - 571.6 \right] - \left[ -911.0 - 1080.0 \right] \] \[ = -1681.6 - (-1991.0) \] \[ = -1681.6 + 1991.0 = 309.4 \, \text{kJ/mol} \] Now, since we have 0.166 moles of \( \mathrm{SiO}_2 \): \[ \text{Heat} = \Delta H_{reaction} \times \text{moles of } \mathrm{SiO}_2 \] \[ = 309.4 \, \text{kJ/mol} \times 0.166 \, \text{mol} \approx 51.4 \, \text{kJ} \] Thus, the heat released in the reaction is approximately \( 51.4 \, \text{kJ} \). Since the reaction is exothermic, the value should be negative: \[ \text{Heat} = -51.4 \, \text{kJ} \] The final answer is: \(-51.4\)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To calculate the heat released or absorbed in the reaction, we first need to find the enthalpy change (\( \Delta H \)) for the following reaction: \[ \mathrm{SiO}_{2(\mathrm{s})} + 4 \mathrm{HF}_{(\mathrm{aq})} \rightarrow \mathrm{SiF}_{4(\mathrm{g})} + 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \] Typical values for the standard enthalpy change of formation (\( \Delta H_f^\circ \)) for the compounds involved can be found in thermodynamic tables. For example: - \( \Delta H_f^\circ \) of \( \mathrm{SiO}_2 \) is approximately -911.0 kJ/mol. - \( \Delta H_f^\circ \) of \( \mathrm{HF} \) is approximately -273.0 kJ/mol. - \( \Delta H_f^\circ \) of \( \mathrm{SiF}_4 \) is approximately -1200.0 kJ/mol. - \( \Delta H_f^\circ \) of \( \mathrm{H}_2O \) is approximately -285.8 kJ/mol. Now we can calculate the \( \Delta H \) for the reaction: \[ \Delta H = [\Delta H_f^\circ (\mathrm{SiF}_4) + 2 \times \Delta H_f^\circ (\mathrm{H}_2O)] - [\Delta H_f^\circ (\mathrm{SiO}_2) + 4 \times \Delta H_f^\circ (\mathrm{HF})] \] Substituting the values gives us: \[ \Delta H = [(-1200.0) + 2 \times (-285.8)] - [(-911.0) + 4 \times (-273.0)] \] \[ \Delta H = (-1200.0 - 571.6) - (-911.0 - 1092.0) \] \[ \Delta H = -1771.6 + 2003.0 = 231.4 \text{ kJ/mol} \] Now, since we are using 10.0 grams of \( \mathrm{SiO}_2 \), we need to convert grams to moles. The molar mass of \( \mathrm{SiO}_2 \) is approximately 60.08 g/mol. \[ \text{Moles of } \mathrm{SiO}_2 = \frac{10.0 \text{ grams}}{60.08 \text{ g/mol}} \approx 0.166 mol \] Finally, we can find the heat for the reaction of this amount of \( \mathrm{SiO}_2 \): \[ q = \Delta H \times \text{moles of } \mathrm{SiO}_2 = 231.4 \text{ kJ/mol} \times 0.166 \text{ mol} \approx 38.5 \text{ kJ} \] Since heat is released, it will be negative: **Answer: -38.5**

Latest Chemistry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad