\begin{tabular}{ll}8 & (a) The expression of \( (1+p x)^{n} \) where \( n>0 \) by the binomial theorem is \\ \( 1+14 x+21 p^{2} x^{2}+k x^{3}+\ldots \), find the value of \( p \) and of \( k \). \\ \hline (b) Evaluate the coefficient of \( x^{5} \) in the expansion of \( \left(x^{2}-\frac{2}{x}\right)^{7} \).\end{tabular}
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To solve part (a), we can use the binomial theorem, which states that: \[ (1 + px)^n = \sum_{k=0}^{n} \binom{n}{k} (px)^k = \sum_{k=0}^{n} \binom{n}{k} p^k x^k \] Comparing with the given polynomial \(1 + 14x + 21p^2x^2 + kx^3 + \ldots\), we can extract information about the coefficients: 1. The coefficient of \(x\) (which is \(14\)) corresponds to \(\binom{n}{1} p = 14\). 2. The coefficient of \(x^2\) (which is \(21p^2\)) corresponds to \(\binom{n}{2} p^2 = 21p^2\). Now, we know \(\binom{n}{1} = n\) and \(\binom{n}{2} = \frac{n(n-1)}{2}\). Thus, we have two equations: 1. \(np = 14\) (1) 2. \(\frac{n(n-1)}{2}p^2 = 21p^2\) (2) Dividing equation (2) by \(p^2\) (assuming \(p \neq 0\)), we obtain: \[ \frac{n(n-1)}{2} = 21 \quad \Rightarrow \quad n(n-1) = 42 \] The integer factors of 42 that fit this equation are \(7\) and \(6\): \[ n = 7 \quad \text{or} \quad n = -6 \quad \Rightarrow \quad n = 7 \quad (\text{since } n > 0) \] Substituting \(n = 7\) back into equation (1) gives: \[ 7p = 14 \quad \Rightarrow \quad p = 2 \] Next, substituting \(p = 2\) back into equation (2) to find \(k\): We know: \[ \frac{7(6)}{2} \cdot 2^2 = 21 \cdot 2^2 = 84 \quad \Rightarrow \quad k = \frac{n(n-1)}{6} p^3 = \frac{7(6)}{6}(2^3) = 7 \cdot 8 = 56 \] Thus, the values are: \[ p = 2 \quad \text{and} \quad k = 56 \] Now, moving to part (b): To find the coefficient of \(x^5\) in the expansion of \(\left(x^2 - \frac{2}{x}\right)^7\), we can use the binomial theorem again. The general term in the expansion is: \[ \binom{7}{k} (x^2)^{7-k} \left(-\frac{2}{x}\right)^k = \binom{7}{k}x^{2(7-k)}(-2)^k x^{-k} = \binom{7}{k}(-2)^k x^{14-3k} \] We want to identify the term where \(14 - 3k = 5\): \[ 14 - 3k = 5 \quad \Rightarrow \quad 3k = 9 \quad \Rightarrow \quad k = 3 \] Now substituting \(k = 3\) into the general term: \[ \text{Coefficient} = \binom{7}{3}(-2)^3 = \binom{7}{3}(-8) \] Calculating \(\binom{7}{3} = \frac{7 \times 6 \times 5}{3 \times 2 \times 1} = 35\), we have: \[ 35 \cdot (-8) = -280 \] Therefore, the coefficient of \(x^5\) in the expansion is: \[ -280 \] In summary, the results are: \(p = 2\), \(k = 56\), and the coefficient of \(x^5\) is \(-280\).
