Find the solution to the system of equations. You can use the interactive graph below to find the solution. \( \left\{\begin{array}{l}-3 x-9 y=18 \\ 4 x+3 y=12\end{array}\right. \) \( x= \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To solve the system of equations, we can start by expressing each equation in a more manageable form. Rearranging the first equation \(-3x - 9y = 18\) gives us \(y = -\frac{1}{3}x - 2\). For the second equation \(4x + 3y = 12\), we can express \(y\) similarly as \(y = -\frac{4}{3}x + 4\). Now we can set the two expressions for \(y\) equal to each other: \(-\frac{1}{3}x - 2 = -\frac{4}{3}x + 4\) Solving for \(x\), we find \(x = 3\). Substituting \(x\) back into one of the equations gives us \(y = -\frac{1}{3}(3) - 2 = -3\). Thus, the solution to the system is \(x = 3\) and \(y = -3\).
