(1) Straight to the Point Direction: Solve the following and SHOW your complete solution. (3 points each) (Note: Use ONLY the back side of this paper for your solution and the graph A rocket is launched with an initial velocity of \( 50 \mathrm{~m} / \mathrm{s} \) and accelerates uniformly at \[ a(t)=20 \mathrm{~m} / \mathrm{s}^{2} \text { for } 4 \text { seconds. } \] (1-3) Approximate the total change in velocity over the 4 -second interval using a Riemann sum with \( n=5 \) subintervals, considering left endpoints, right endpoints, and midpoints. Let: \( 0 \leq t \leq 4 \) and \( n=5 \). (4-5) Write the definite integral representing the total change in velocity and evaluate it.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To approximate the total change in velocity using a Riemann sum with \( n=5 \) subintervals over the interval \( 0 \leq t \leq 4 \) seconds, we will first determine the width of each subinterval, \( \Delta t \), which is given by: \[ \Delta t = \frac{(4 - 0)}{5} = \frac{4}{5} = 0.8 \text{ seconds.} \] Now, for the left endpoints, we will calculate the change in velocity at the following time points: \( t = 0, 0.8, 1.6, 2.4, 3.2 \). The acceleration function is constant, \( a(t) = 20 \, \text{m/s}^2 \). Therefore, for each subinterval, the change in velocity \( \Delta v \) can be calculated as: \[ \Delta v = a(t) \cdot \Delta t = 20 \, \text{m/s}^2 \cdot 0.8 \, \text{s} = 16 \, \text{m/s}. \] So, for the left endpoint Riemann sum: \[ \text{Total change in velocity} = 5 \cdot 16 \, \text{m/s} = 80 \, \text{m/s}. \] For the right endpoints, we will evaluate the change in velocity at the points: \( t = 0.8, 1.6, 2.4, 3.2, 4.0 \). The calculation remains the same (since \( a(t) \) is constant): The right endpoint Riemann sum will also yield: \[ \text{Total change in velocity} = 5 \cdot 16 \, \text{m/s} = 80 \, \text{m/s}. \] Now for the midpoint Riemann sum, we need to evaluate at the midpoints \( t = 0.4, 1.2, 2.0, 2.8, 3.6 \). Again, the calculation will yield: \[ \Delta v = 20 \, \text{m/s}^2 \cdot 0.8 \, \text{s} = 16 \, \text{m/s}, \] and thus: \[ \text{Total change in velocity} = 5 \cdot 16 \, \text{m/s} = 80 \, \text{m/s}. \] Now, for the definite integral representing the total change in velocity, we can express it as: \[ \int_0^4 a(t) \, dt = \int_0^4 20 \, dt. \] Evaluating the integral: \[ \int_0^4 20 \, dt = 20 \cdot [t]_0^4 = 20 \cdot (4 - 0) = 80 \, \text{m/s}. \] So, the total change in velocity over the 4-second interval is \( 80 \, \text{m/s} \).
