Pregunta
upstudy study bank question image url

The sequence is \( -1,4,-7,10, \ldots \) \( :: \) arithmetic whether the sequence is arithmetic, geometric, or neither \( :: \) a common difference of 3

Ask by Thornton Phillips. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The sequence is neither arithmetic nor geometric.

Solución

To determine whether the sequence \( -1, 4, -7, 10, \ldots \) is arithmetic, geometric, or neither, we need to analyze the differences between consecutive terms. 1. **Identify the terms of the sequence:** - First term (\(a_1\)): \(-1\) - Second term (\(a_2\)): \(4\) - Third term (\(a_3\)): \(-7\) - Fourth term (\(a_4\)): \(10\) 2. **Calculate the differences between consecutive terms:** - Difference between \(a_2\) and \(a_1\): \[ d_1 = a_2 - a_1 = 4 - (-1) = 4 + 1 = 5 \] - Difference between \(a_3\) and \(a_2\): \[ d_2 = a_3 - a_2 = -7 - 4 = -11 \] - Difference between \(a_4\) and \(a_3\): \[ d_3 = a_4 - a_3 = 10 - (-7) = 10 + 7 = 17 \] 3. **Analyze the differences:** - The differences are \(5\), \(-11\), and \(17\). Since these differences are not constant, the sequence is not arithmetic. 4. **Check if the sequence is geometric:** - For a sequence to be geometric, the ratio of consecutive terms must be constant. Let's calculate the ratios: - Ratio of \(a_2\) to \(a_1\): \[ r_1 = \frac{a_2}{a_1} = \frac{4}{-1} = -4 \] - Ratio of \(a_3\) to \(a_2\): \[ r_2 = \frac{a_3}{a_2} = \frac{-7}{4} \] - Ratio of \(a_4\) to \(a_3\): \[ r_3 = \frac{a_4}{a_3} = \frac{10}{-7} \] 5. **Analyze the ratios:** - The ratios are \(-4\), \(\frac{-7}{4}\), and \(\frac{10}{-7}\). Since these ratios are not constant, the sequence is not geometric. 6. **Conclusion:** - The sequence \( -1, 4, -7, 10, \ldots \) is neither arithmetic nor geometric. The statement about a common difference of 3 is incorrect, as the differences calculated do not support that claim.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

This sequence is arithmetic! You can tell because the difference between consecutive terms is constant. For instance, if you take \(4 - (-1) = 5\), then \(-7 - 4 = -11\), and \(10 - (-7) = 17\). Wait a moment! It seems there's a misunderstanding in the difference you've provided. The differences actually alternate signs and increase in a pattern, which gives an overall non-constant result. If you’re trying to find the nth term, remember the standard formula for an arithmetic sequence is \(a_n = a_1 + (n-1)d\), where \(a_1\) is the first term and \(d\) is the common difference. Just make sure to clarify the differences for accuracy!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad