Pregunta
upstudy study bank question image url

Find the values of \( x \geq 0 \) and \( y \geq 0 \) that maximize \( z=11 x+14 y \), subject to each of the following sets of constraints. \( \begin{array}{lll}\text { (a) } \begin{array}{rr}x+y \leq 16 & \text { (b) } 2 x+y \leq 10\end{array} & \text { (c) } x+2 y \geq 8 \\ x+5 y \leq 20 & \begin{array}{r}2 x+y \geq 10 \\ x+5 y \leq 15\end{array} \\ x-y \leq 6\end{array} \) (a) Select the correct choice and, if necessary, fill in the answer boxes to complete your choice. A. The maximum value is \( \square \) and occurs at the point (Simplify your answers.) B. There is no maximum value.

Ask by Estrada Huff. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**Part (a):** - **Maximum Value:** 179 - **Point:** (15, 1) **Part (b):** - **Maximum Value:** 140 - **Point:** (0, 10) **Part (c):** No maximum value exists within the given constraints.

Solución

To solve the problem of maximizing \( z = 11x + 14y \) under the given constraints, we will analyze each set of constraints step by step. ### Part (a) **Constraints:** 1. \( x + y \leq 16 \) 2. \( x + 5y \leq 20 \) 3. \( x \geq 0 \) 4. \( y \geq 0 \) **Step 1: Graph the constraints** 1. From \( x + y \leq 16 \): - The line is \( y = 16 - x \). - Intercepts: \( (16, 0) \) and \( (0, 16) \). 2. From \( x + 5y \leq 20 \): - The line is \( y = \frac{20 - x}{5} \). - Intercepts: \( (20, 0) \) and \( (0, 4) \). **Step 2: Find the feasible region** The feasible region is bounded by the lines and the axes. We will find the intersection points of the lines: 1. Set \( x + y = 16 \) and \( x + 5y = 20 \): \[ x + y = 16 \quad (1) \\ x + 5y = 20 \quad (2) \] Substituting \( x = 16 - y \) into (2): \[ 16 - y + 5y = 20 \\ 16 + 4y = 20 \\ 4y = 4 \\ y = 1 \\ x = 16 - 1 = 15 \] Intersection point: \( (15, 1) \). **Step 3: Evaluate the objective function at the vertices of the feasible region** Vertices of the feasible region: 1. \( (0, 0) \) 2. \( (0, 4) \) 3. \( (16, 0) \) 4. \( (15, 1) \) Calculating \( z \) at each vertex: 1. \( z(0, 0) = 11(0) + 14(0) = 0 \) 2. \( z(0, 4) = 11(0) + 14(4) = 56 \) 3. \( z(16, 0) = 11(16) + 14(0) = 176 \) 4. \( z(15, 1) = 11(15) + 14(1) = 165 + 14 = 179 \) **Step 4: Determine the maximum value** The maximum value occurs at \( (15, 1) \) with \( z = 179 \). ### Conclusion for Part (a) A. The maximum value is \( 179 \) and occurs at the point \( (15, 1) \). Now, let's proceed to part (b) and (c) in a similar manner. ### Part (b) **Constraints:** 1. \( 2x + y \leq 10 \) 2. \( 2x + y \geq 10 \) 3. \( x + 5y \leq 15 \) 4. \( x - y \leq 6 \) 5. \( x \geq 0 \) 6. \( y \geq 0 \) **Step 1: Graph the constraints** 1. From \( 2x + y = 10 \): - Intercepts: \( (5, 0) \) and \( (0, 10) \). 2. From \( x + 5y = 15 \): - Intercepts: \( (15, 0) \) and \( (0, 3) \). 3. From \( x - y = 6 \): - Intercepts: \( (6, 0) \) and \( (0, -6) \) (not relevant since \( y \geq 0 \)). **Step 2: Find the feasible region** The feasible region is bounded by the lines and the axes. We will find the intersection points of the lines: 1. Set \( 2x + y = 10 \) and \( x + 5y = 15 \): \[ 2x + y = 10 \quad (1) \\ x + 5y = 15 \quad (2) \] Substituting \( y = 10 - 2x \) into (2): \[ x + 5(10 - 2x) = 15 \\ x + 50 - 10x = 15 \\ -9x = -35 \\ x = \frac{35}{9} \\ y = 10 - 2\left(\frac{35}{9}\right) = \frac{10}{9} \] Intersection point: \( \left(\frac{35}{9}, \frac{10}{9}\right) \). **Step 3: Evaluate the objective function at the vertices of the feasible region** Vertices of the feasible region: 1. \( (0, 0) \) 2. \( (5, 0) \) 3. \( (0, 10) \) 4. \( (6, 0) \) 5. \( \left(\frac{35}{9}, \frac{10}{9}\right) \) Calculating \( z \) at each vertex: 1. \( z(0, 0) = 0 \) 2. \( z(5, 0) = 55 \) 3. \( z(0, 10) = 140 \) 4. \( z(6, 0) = 66 \) 5. \( z\left(\frac{35}{9}, \frac{10}{9}\right) = 11\left(\frac{35}{9}\right) + 14\left(\frac{10}{9}\right) = \frac{385}{9} + \frac{140}{9} = \frac{525}{9} \approx 58.33 \) **Step 4: Determine the maximum value** The maximum value occurs at \( (0, 10) \) with \( z = 140 \). ### Conclusion for Part (b) A. The maximum value is \( 140 \) and occurs at the point \( (0, 10) \). ### Part (c) **Constraints:** 1. \( x + 2y \geq 8 \) 2. \( 2x + y \geq 10 \) 3. \( x + 5y \leq 15 \) 4. \( x - y \leq 6 \) 5. \( x \geq 0 \) 6

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the given linear programming problem for part (a), we need to graph the constraints and find the feasible region for the objective function \( z = 11x + 14y \). 1. **Constraints**: - \( x + y \leq 16 \) - \( x + 5y \leq 20 \) - \( x - y \leq 6 \) - \( x \geq 0 \) - \( y \geq 0 \) 2. **Finding the intersection points** of the constraints: - From \( x + y = 16 \), we can express \( y = 16 - x \). - From \( x + 5y = 20 \), we can express \( y = \frac{20 - x}{5} \). - From \( x - y = 6 \), we can express \( y = x - 6 \). 3. **Solving for intersection points**: - Set: - \( x + y = 16 \) and \( x + 5y = 20 \) - Substitute \( y = 16 - x \): - \( x + 5(16 - x) = 20 \) → \( x + 80 - 5x = 20 \) → \( -4x = -60 \) → \( x = 15 \), thus \( y = 1 \) (Point: (15, 1)) - \( x + y = 16 \) and \( x - y = 6 \) - Set \( x - (16 - x) = 6 \) → \( 2x - 16 = 6 \) → \( 2x = 22 \) → \( x = 11 \), thus \( y = 5 \) (Point: (11, 5)) - \( x + 5y = 20 \) and \( x - y = 6 \) - Set: \( x - (x - 6) = 6 \) - Thus substitute: \( x + 5(x - 6) = 20 \) → results show infeasibility here. - Evaluating the feasible region yields points: \( (0, 0), (15,1), (11,5), (0,4) \) 4. **Objective function at feasible points**: - At \( (0, 0): z = 0 \) - At \( (15, 1): z = 11(15) + 14(1) = 165 + 14 = 179 \) - At \( (11, 5): z = 11(11) + 14(5) = 121 + 70 = 191 \) - At \( (0, 4): z = 0 + 56 = 56 \) Maximal point is \( (11, 5) \). The maximum value is \( 191 \) and occurs at the point \( (11, 5) \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad