Find the values of \( x \geq 0 \) and \( y \geq 0 \) that maximize \( z=11 x+14 y \), subject to each of the following sets of constraints. \( \begin{array}{lll}\text { (a) } \begin{array}{rr}x+y \leq 16 & \text { (b) } 2 x+y \leq 10\end{array} & \text { (c) } x+2 y \geq 8 \\ x+5 y \leq 20 & \begin{array}{r}2 x+y \geq 10 \\ x+5 y \leq 15\end{array} \\ x-y \leq 6\end{array} \) (a) Select the correct choice and, if necessary, fill in the answer boxes to complete your choice. A. The maximum value is \( \square \) and occurs at the point (Simplify your answers.) B. There is no maximum value.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To solve the given linear programming problem for part (a), we need to graph the constraints and find the feasible region for the objective function \( z = 11x + 14y \). 1. **Constraints**: - \( x + y \leq 16 \) - \( x + 5y \leq 20 \) - \( x - y \leq 6 \) - \( x \geq 0 \) - \( y \geq 0 \) 2. **Finding the intersection points** of the constraints: - From \( x + y = 16 \), we can express \( y = 16 - x \). - From \( x + 5y = 20 \), we can express \( y = \frac{20 - x}{5} \). - From \( x - y = 6 \), we can express \( y = x - 6 \). 3. **Solving for intersection points**: - Set: - \( x + y = 16 \) and \( x + 5y = 20 \) - Substitute \( y = 16 - x \): - \( x + 5(16 - x) = 20 \) → \( x + 80 - 5x = 20 \) → \( -4x = -60 \) → \( x = 15 \), thus \( y = 1 \) (Point: (15, 1)) - \( x + y = 16 \) and \( x - y = 6 \) - Set \( x - (16 - x) = 6 \) → \( 2x - 16 = 6 \) → \( 2x = 22 \) → \( x = 11 \), thus \( y = 5 \) (Point: (11, 5)) - \( x + 5y = 20 \) and \( x - y = 6 \) - Set: \( x - (x - 6) = 6 \) - Thus substitute: \( x + 5(x - 6) = 20 \) → results show infeasibility here. - Evaluating the feasible region yields points: \( (0, 0), (15,1), (11,5), (0,4) \) 4. **Objective function at feasible points**: - At \( (0, 0): z = 0 \) - At \( (15, 1): z = 11(15) + 14(1) = 165 + 14 = 179 \) - At \( (11, 5): z = 11(11) + 14(5) = 121 + 70 = 191 \) - At \( (0, 4): z = 0 + 56 = 56 \) Maximal point is \( (11, 5) \). The maximum value is \( 191 \) and occurs at the point \( (11, 5) \).
