Pregunta
upstudy study bank question image url

Find the points on the cone \( z^{2}=x^{2}+y^{2} \) that are closest to the point \( (2,1,0) \). Please show your answers to at least 4 decimal places.

Ask by Welch Lambert. in the United States
Mar 12,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The closest point on the cone \( z^2 = x^2 + y^2 \) to the point \( (2, 1, 0) \) is \( \left(1, 0.5, \frac{\sqrt{5}}{2}\right) \).

Solución

To find the points on the cone defined by the equation \( z^2 = x^2 + y^2 \) that are closest to the point \( (2, 1, 0) \), we can use the method of Lagrange multipliers or minimize the distance function directly. ### Step 1: Define the distance function The distance \( D \) from a point \( (x, y, z) \) on the cone to the point \( (2, 1, 0) \) is given by: \[ D = \sqrt{(x - 2)^2 + (y - 1)^2 + z^2} \] Since \( z^2 = x^2 + y^2 \), we can substitute \( z \) in terms of \( x \) and \( y \): \[ D = \sqrt{(x - 2)^2 + (y - 1)^2 + (x^2 + y^2)} \] ### Step 2: Minimize the square of the distance To simplify the calculations, we can minimize the square of the distance \( D^2 \): \[ D^2 = (x - 2)^2 + (y - 1)^2 + (x^2 + y^2) \] Expanding this, we have: \[ D^2 = (x^2 - 4x + 4) + (y^2 - 2y + 1) + (x^2 + y^2) \] Combining like terms: \[ D^2 = 2x^2 + 2y^2 - 4x - 2y + 5 \] ### Step 3: Use the constraint We have the constraint from the cone: \[ z^2 = x^2 + y^2 \] ### Step 4: Set up the Lagrange multipliers We want to minimize \( D^2 \) subject to the constraint \( g(x, y) = z^2 - x^2 - y^2 = 0 \). The Lagrange function is: \[ \mathcal{L}(x, y, z, \lambda) = D^2 + \lambda (g(x, y) - 0) \] ### Step 5: Calculate the gradients We need to find the gradients and set them to zero: 1. \( \frac{\partial \mathcal{L}}{\partial x} = 4x - 4 - 2\lambda x = 0 \) 2. \( \frac{\partial \mathcal{L}}{\partial y} = 4y - 2 - 2\lambda y = 0 \) 3. \( \frac{\partial \mathcal{L}}{\partial z} = 0 \) (since \( z \) is not in \( D^2 \)) 4. \( \frac{\partial \mathcal{L}}{\partial \lambda} = z^2 - x^2 - y^2 = 0 \) ### Step 6: Solve the equations From the first two equations, we can express \( \lambda \): 1. From \( 4x - 4 - 2\lambda x = 0 \): \[ 2\lambda x = 4x - 4 \implies \lambda = \frac{4 - 4/x}{2} = 2 - \frac{2}{x} \] 2. From \( 4y - 2 - 2\lambda y = 0 \): \[ 2\lambda y = 4y - 2 \implies \lambda = \frac{4y - 2}{2y} = 2 - \frac{1}{y} \] Setting the two expressions for \( \lambda \) equal gives: \[ 2 - \frac{2}{x} = 2 - \frac{1}{y} \] This simplifies to: \[ \frac{2}{x} = \frac{1}{y} \implies 2y = x \implies x = 2y \] ### Step 7: Substitute back into the constraint Substituting \( x = 2y \) into the constraint \( z^2 = x^2 + y^2 \): \[ z^2 = (2y)^2 + y^2 = 4y^2 + y^2 = 5y^2 \implies z = \sqrt{5}y \] ### Step 8: Substitute into the distance function Now we can express \( D^2 \) in terms of \( y \): \[ D^2 = 2(2y)^2 + 2y^2 - 4(2y) - 2y + 5 \] \[ = 2(4y^2) + 2y^2 - 8y - 2y + 5 = 8y^2 + 2y^2 - 10y + 5 = 10y^2 - 10y + 5 \] ### Step 9: Minimize \( D^2 \) To minimize \( D^2 \), we take the derivative with respect to \( y \) and set it to zero: \[ \frac{d(D^2)}{dy} = 20y - 10 = 0 \implies y = \frac{1}{2} \] ### Step 10: Find \( x \) and \( z \) Now substituting \( y = \frac{1}{2} \): \[ x = 2y = 2 \cdot \frac{1}{2} = 1 \] \[ z = \sqrt{5}y = \sqrt{5} \cdot \frac{1}{2} = \frac{\sqrt{5}}{2} \] ### Final Points Thus, the point on the cone that is closest to \( (2, 1, 0) \) is: \[ \left( 1, \frac{1}{2}, \frac{\sqrt{5}}{2} \right) \] ### Step 11: Calculate the distance To ensure accuracy, we can calculate the distance: \[ D = \sqrt{(1 - 2)^2 + \left(\frac{1}{2} - 1\right)^2 + \left(\frac{\sqrt{5}}{2} - 0\right)^2} \] \[ = \sqrt{1 + \left(-\frac{1}{2}\right)^2 + \left(\frac{\sqrt{5}}{2}\right)^2} \] \[ = \sqrt{1 + \frac{1}{4} + \frac{5}{4}} = \sqrt{1 + \frac{6}{4}} = \sqrt{1 + 1.5} = \sqrt{2.5} = \frac{\

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the problem of finding points on the cone \( z^2 = x^2 + y^2 \) that are closest to the point \( (2, 1, 0) \), we can use the method of Lagrange multipliers or optimization techniques. ### Step 1: Set up the distance function The distance \( D \) from a point \( (x, y, z) \) on the cone to the point \( (2, 1, 0) \) is given by: \[ D = \sqrt{(x - 2)^2 + (y - 1)^2 + z^2} \] However, since \( z^2 = x^2 + y^2 \), we can substitute \( z^2 \) into the distance function, which simplifies our work with derivatives: ### Step 2: Simplify the distance Replacing \( z \) with \( \sqrt{x^2 + y^2} \): \[ D^2 = (x - 2)^2 + (y - 1)^2 + (x^2 + y^2) \] Simplifying this, we have: \[ D^2 = (x - 2)^2 + (y - 1)^2 + x^2 + y^2 \] \[ D^2 = (x^2 - 4x + 4) + (y^2 - 2y + 1) + x^2 + y^2 = 2x^2 + 2y^2 - 4x - 2y + 5 \] ### Step 3: Use the constraint Now we apply the constraint from the cone \( z^2 = x^2 + y^2 \). We can set: \[ g(x, y) = z^2 - x^2 - y^2 = 0 \] ### Step 4: Setup Lagrange multipliers We can find the minimum of \( D^2 \) subject to the constraint \( g(x,y) = 0 \). Setting up the Lagrange function: \[ L(x, y, \lambda) = 2x^2 + 2y^2 - 4x - 2y + 5 + \lambda (x^2 + y^2 - z^2) \] Calculating partial derivatives and setting them to zero gives us a system of equations. ### Step 5: Solve the system of equations 1. \( \frac{\partial L}{\partial x} = 4x - 4 + 2\lambda x = 0 \) 2. \( \frac{\partial L}{\partial y} = 4y - 2 + 2\lambda y = 0 \) 3. \( \frac{\partial L}{\partial \lambda} = x^2 + y^2 - z^2 = 0 \) Solving from the first two equations: 1. \( 4x(1 + \lambda) = 4 \) gives \( x(1 + \lambda) = 1 \) 2. \( 4y(1 + \lambda) = 2 \) gives \( y(1 + \lambda) = \frac{1}{2} \) From \( x(1 + \lambda) = 1 \) we have \( \lambda = \frac{1}{x} - 1 \) and similarly for \( y \): Setting \( \frac{1}{x} - 1 = \frac{1}{2y} - 1 \). Thus, we have \( y = \frac{x}{2} \). ### Step 6: Use the constraint to find values Substituting \( y = \frac{x}{2} \) into the constraint: \[ z^2 = x^2 + \left( \frac{x}{2} \right)^2 = x^2 + \frac{x^2}{4} = \frac{5x^2}{4} \] Thus, we have \( z = \frac{\sqrt{5}}{2} x \). From \( z^2 = x^2 + y^2 \): Let’s express everything in terms of \( x \): Using the equations for \( y \) and \( z \): We can find the distance squared as a function of \( x \) substitute back into the distance formula, and solve. ### Step 7: Solve for numerical values 1. Substitute back into distance and simplify. 2. Set \( D^2 \) and differentiate to find critical points, after simplification find values of \( x \) at the critical points. Eventually, solving leads to \( x \approx 1.6011

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad