A laptop computer is purchased for \( \$ 2450 \). After each year, the resale value decreases by \( 35 \% \). What will the resale value be after 4 years? Use the calculator provided and round your answer to the nearest dollar. \( 5 \square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To find the resale value after each year, you can use the formula: \[ \text{Resale Value} = \text{Initial Value} \times (1 - \text{Depreciation Rate})^n \] Where: - Initial Value = \( 2450 \) - Depreciation Rate = \( 0.35 \) - \( n \) = number of years (in this case, \( n = 4 \)) Calculating it out: \[ \text{Resale Value} = 2450 \times (1 - 0.35)^4 \] \[ \text{Resale Value} = 2450 \times (0.65)^4 \] \[ \text{Resale Value} = 2450 \times 0.179 \approx 438.55 \] Rounding to the nearest dollar, the resale value after 4 years will be approximately \( 439 \). So, the final answer is: \( 439 \)
