Pregunta
upstudy study bank question image url

A laptop computer is purchased for \( \$ 2450 \). After each year, the resale value decreases by \( 35 \% \). What will the resale value be after 4 years? Use the calculator provided and round your answer to the nearest dollar. \( 5 \square \)

Ask by Campbell Deleon. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The resale value of the laptop after 4 years is approximately \$437.

Solución

To find the resale value of the laptop after 4 years, we can use the formula for exponential decay: \[ V = P \times (1 - r)^n \] where: - \( V \) is the resale value after \( n \) years, - \( P \) is the initial purchase price, - \( r \) is the rate of decrease per year, - \( n \) is the number of years. Given: - Initial purchase price \( P = \$2450 \), - Rate of decrease per year \( r = 35\% = 0.35 \), - Number of years \( n = 4 \). Substitute the values into the formula: \[ V = 2450 \times (1 - 0.35)^4 \] Now, we can calculate the resale value after 4 years using the calculator provided. Calculate the value by following steps: - step0: Calculate: \(2450\left(1-0.35\right)^{4}\) - step1: Subtract the numbers: \(2450\times 0.65^{4}\) - step2: Convert the expressions: \(2450\left(\frac{13}{20}\right)^{4}\) - step3: Simplify: \(2450\times \frac{13^{4}}{20^{4}}\) - step4: Evaluate the power: \(2450\times \frac{28561}{20^{4}}\) - step5: Rewrite the expression: \(10\times 245\times \frac{28561}{20^{4}}\) - step6: Rewrite the expression: \(10\times 245\times \frac{28561}{10^{4}\times 2^{4}}\) - step7: Reduce the numbers: \(245\times \frac{28561}{10^{3}\times 2^{4}}\) - step8: Rewrite the expression: \(5\times 49\times \frac{28561}{10^{3}\times 2^{4}}\) - step9: Rewrite the expression: \(5\times 49\times \frac{28561}{5^{3}\times 2^{3}\times 2^{4}}\) - step10: Reduce the numbers: \(49\times \frac{28561}{5^{2}\times 2^{3}\times 2^{4}}\) - step11: Multiply: \(\frac{49\times 28561}{3200}\) - step12: Multiply: \(\frac{1399489}{3200}\) The resale value of the laptop after 4 years is approximately $437.34. Therefore, the resale value after 4 years is $437.34.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the resale value after each year, you can use the formula: \[ \text{Resale Value} = \text{Initial Value} \times (1 - \text{Depreciation Rate})^n \] Where: - Initial Value = \( 2450 \) - Depreciation Rate = \( 0.35 \) - \( n \) = number of years (in this case, \( n = 4 \)) Calculating it out: \[ \text{Resale Value} = 2450 \times (1 - 0.35)^4 \] \[ \text{Resale Value} = 2450 \times (0.65)^4 \] \[ \text{Resale Value} = 2450 \times 0.179 \approx 438.55 \] Rounding to the nearest dollar, the resale value after 4 years will be approximately \( 439 \). So, the final answer is: \( 439 \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad